The impact of cross-linking degree on the thermal and texture behavior of poly(methyl methacrylate)

2016 ◽  
Vol 124 (2) ◽  
pp. 709-717 ◽  
Author(s):  
Mahmoud A. Hussein ◽  
Reda M. El-Shishtawy ◽  
Bahaa M. Abu-Zied ◽  
Abdullah M. Asiri
2012 ◽  
Vol 32 (4-5) ◽  
pp. 275-282 ◽  
Author(s):  
Azman Hassan ◽  
Noor Izyan Syazana Mohd Yusoff ◽  
Aznizam Abu Bakar

Abstract The influence of talc and poly (methyl methacrylate) (PMMA)-grafted (g)-talc on the mechanical properties of poly (vinyl chloride) (PVC) was investigated. The graft copolymerization was carried out under nitrogen atmosphere, using the free radical initiation technique. The blend formulations were first dry blended using a mixer before being milled into sheets on a two-roll mill at 165°C, and then hot pressed into composites at 190°C. The flexural modulus of both composites increased with increasing filler content from 0 to 20 part per hundred resin (phr), however the increment of grafted (57.7%) was higher than ungrafted composites (48.5%). A similar trend has also been observed for thermal stability. The impact strength of grafted was increased by 45.82%, whereas 18.96% in reduction was observed for the ungrafted composites. The decrement of flexural strength by 16.6% and 21.1% of grafted and ungrafted, respectively, has also shown the improvement in mechanical properties of grafted composites.


2004 ◽  
Vol 37 (24) ◽  
pp. 9211-9218 ◽  
Author(s):  
Pankaj Gupta ◽  
Scott R. Trenor ◽  
Timothy E. Long ◽  
Garth L. Wilkes

2021 ◽  
Vol 0 (0) ◽  
Author(s):  
Shwetabh Verma ◽  
Juergen Hesser ◽  
Samuel Arba-Mosquera

Abstract Smoother surfaces after laser vision correction have been widely accepted as a factor for improving visual recovery regardless of the used technique (PRK, LASIK, or even SMILE). We tested the impact of laser beam truncation, dithering (expressing a continuous profile on a basis of lower resolution causing pixels to round up/down the number of pulses to be placed), and jitter (a controlled random noise (up to ±20 µm in either direction) added to the theoretical scanner positions) on residual smoothness after Poly(methyl methacrylate) (PMMA) ablations, using a close-to-Gaussian beam profile. A modified SCHWIND AMARIS system has been used providing a beam profile with the following characteristics: close-to-Gaussian beam profile with full width at half maximum (FWHM) of 540 µm, 1050 Hz. Laser parameters have been optimized following Invest. Ophthalmol. Vis. Sci., vol. 58, no. 4, pp. 2021–2037, 2017, the pulse energy has been optimized following Biomed. Opt. Express vol. 4, pp. 1422–1433, 2013. For the PMMA ablations, two configurations (with a 0.7 mm pinhole and 0.75 mJ and without pinhole and 0.9 mJ (for fluences of 329 mJ/cm2 and 317 mJ/cm2 and corneal spot volumes of 174 and 188 pl)) were considered, along with two types of lattices (with and without ordered dithering to select the optimum pulse positions), and two types of spot placement (with and without jitter). Real ablations on PMMA (ranging from −12D to +6D with and without astigmatism of up to 3D) completed the study setup. The effect of the 2 × 2 × 2 different configurations was analyzed based on the roughness in ablation estimated from the root mean square error in ablation. Truncation of the beam is negatively associated to a higher level of residual roughness; ordered dithering to select the optimum pulse positions is positively associated to a lower level of residual roughness; jitter is negatively associated to a higher level of residual roughness. The effect of dithering was the largest, followed by truncation, and jitter had the lowest impact on results. So that: Dithering approaches help to further minimize residual roughness after ablation; minimum (or no) truncation of the beam is essential to minimize residual roughness after ablation; and jitter shall be avoided to minimize residual roughness after ablation. The proposed model can be used for optimization of laser systems used for ablation processes at relatively low cost and would directly improve the quality of results. Minimum (or no) truncation of the beam is essential to minimize residual roughness after ablation. Ordered dithering without jitter helps to further minimize residual roughness after ablation. Other more complex dithering approaches may further contribute to minimize residual roughness after ablation.


2018 ◽  
Vol 773 ◽  
pp. 51-55
Author(s):  
Jasmine Pongkasem ◽  
Saowaroj Chuayjuljit ◽  
Phasawat Chaiwutthinan ◽  
Amnouy Larpkasemsuk ◽  
Anyaporn Boonmahitthisud

In this study, poly(lactic acid) (PLA) was melt mixed with three weight percentages (10–30wt%) of ethylene vinyl acetate copolymer (EVA) in an internal mixer, followed by a compression molding. According to a better combination of mechanical properties, the 90/10 (w/w) PLA/EVA was selected for preparing hybrid nanocomposites with three loadings (1, 3 and 5 parts per hundred of resin , phr) of poly(methyl methacrylate)-encapsulated nanosilica (PMMA-nSiO2). The nanolatex of PMMA-nSiO2 was synthesized via in situ differential microemulsion polymerization. The obtained PMMA-nSiO2 showed a core-shell morphology with nSiO2 as a core and PMMA as a shell, having an average diameter of 43.4nm. The influences of the EVA and PMMA-nSiO2 on the impact strength and the tensile properties of the PLA/EVA nanocomposites were studied and compared. It is found that the impact strength and the tensile properties of the 90/10 (w/w) PLA/EVA were improved with the appropriate amounts of the EVA and PMMA-nSiO2.


2015 ◽  
Vol 749 ◽  
pp. 304-307
Author(s):  
Sirirat Wacharawichanant

The effects of the montmorillonite clay surface modified with 25-30 wt% octadecylamine (clay) on mechanical and morphological properties of poly (methyl methacrylate) (PMMA)/ ethylene-octene copolymer (EOC)/clay composites were investigated. The composites of blends of PMMA/EOC with clay were prepared by melt mixing in an internal mixer. The results showed that the Young’s modulus of the composites increased with increasing clay content. The ratio of PMMA and EOC was 80/20 by weight and the clay content was 3 and 5 phr. The results showed Young’s modulus of the composites increased with increasing clay content. While the impact strength, tensile strength and percent strain at break of the composites decreased with increasing clay content. Scanning electron microscopy analysis showed that the droplet of dispersed EOC phase in PMMA matrix was changed to the elongated structure after adding clay.


2012 ◽  
Vol 535-537 ◽  
pp. 1193-1196
Author(s):  
Nai Qiang Zhang ◽  
Jian Dong ◽  
Hong Yu Chen

Polydimethylsiloxane/poly (methyl methacrylate) (PDMS/PMMA) blends were prepared by radical copolymerization of methyl methacrylate (MMA) and divinylbenzene (DVB) in the presence of PDMS. Elastomers based on PDMS/PMMA blends were formed by cross-linking PDMS with methyltriethoxysilane (MTES). Mechanical property measurements show that the elastomers thus formed exhibit superior tensile strength with respect to general room temperature vulcanized silicone elastomers containing silica. Moreover, investigations were carried out on the elastomers by extraction, scanning electron microscopy (SEM) and differential scanning calorimetry (DSC) measurements. SEM shows that the elastomer has a microphase-separated structure consisting of dispersed PMMA domains within a continuous PDMS matrix. DSC result shows that the elastomers display two glass transition temperatures and confirm the incompatible nature of PDMS and PMMA.


Sign in / Sign up

Export Citation Format

Share Document