Mechanical and Morphological Properties of Poly(Methyl Methacrylate)/Ethylene-Octene Copolymer/Clay Composites

2015 ◽  
Vol 749 ◽  
pp. 304-307
Author(s):  
Sirirat Wacharawichanant

The effects of the montmorillonite clay surface modified with 25-30 wt% octadecylamine (clay) on mechanical and morphological properties of poly (methyl methacrylate) (PMMA)/ ethylene-octene copolymer (EOC)/clay composites were investigated. The composites of blends of PMMA/EOC with clay were prepared by melt mixing in an internal mixer. The results showed that the Young’s modulus of the composites increased with increasing clay content. The ratio of PMMA and EOC was 80/20 by weight and the clay content was 3 and 5 phr. The results showed Young’s modulus of the composites increased with increasing clay content. While the impact strength, tensile strength and percent strain at break of the composites decreased with increasing clay content. Scanning electron microscopy analysis showed that the droplet of dispersed EOC phase in PMMA matrix was changed to the elongated structure after adding clay.

2012 ◽  
Vol 488-489 ◽  
pp. 82-86 ◽  
Author(s):  
Sirirat Wacharawichanant ◽  
Paramaporn Sahapaibounkit ◽  
Unchana Saeueng

This work investigated the effect of montmorillonite clay surface modified with 25-30 wt% trimethyl stearyl ammonium (clay) on mechanical, thermal and morphological properties of polyoxymethylene (POM)/clay nanocomposites were investigated. The results showed that POM/clay nanocomposites could maintain or decrease their tensile strength for a certain clay loading range. The Young’s modulus of the nanocomposites increased by adding clay in a range of 0.5-4 wt% while the impact strength showed an increase in a range of 0.5-2 wt%. The percent strain at break of the nanocomposites decreased with increasing filler content. The thermal degradation temperature decreased with an increase of clay content thus the addition of clay did not improve the thermal stability of POM. The microstructure of neat POM and POM/clay nanocomposites was observed that the dispersion of clay was a good in POM matrix at low clay content. The nanocomposites formed the intercalated structure with clay, and the intercalated clay stacks were distributed uniformly in the nanocomposite. The increase of clay content observed increasing of brittleness in POM/clay nanocomposites.


2021 ◽  
Vol 5 (1) ◽  
pp. 24
Author(s):  
Harekrushna Sutar ◽  
Birupakshya Mishra ◽  
Pragyan Senapati ◽  
Rabiranjan Murmu ◽  
Dibyani Sahu

In this work, polypropylene (PP) and graphene nanoplatelet (GNPs) composites are routed through twin screw mixing and injection moulding. Two types of GNPs with a fixed size of 25 µm with surface areas ranging from 50–80 m2/g (H25, average thickness 15 nm) and 120–150 m2/g (M25, average thickness 6–8 nm) were blended with PP at loading rates of 1, 2, 3, 4, and 5 weight%. Mechanical properties such as tensile, flexural, and impact strengths and Young’s modulus (Ε) are determined. The X-ray diffraction (XRD), differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), dynamic mechanical analysis (DMA), field emission scanning electron microscopy (FESEM), and polarised light microscopy (PLM) techniques are used to understand the crystallisation, thermal, dynamic mechanical, and structural behaviour of the prepared composites. The improvement of mechanical strength is observed with GNP loading for both grades. Decreasing the GNP thickness decreases the impact strength and on the other hand improves the tensile and flexural strengths and Young’s modulus. Maximum tensile (≈33 MPa) and flexural (≈58.81 MPa) strength is found for the composite carrying 5 wt% M25. However, maximum impact strength (0.197 J) is found for PP-5 wt% H25. XRD analysis confirms GNPs have an induction effect on PP’s β phase crystal structure. The PP-GNP composite exhibits better thermal stability based on determining the TD (degradation temperature), T10 (temperature at 10% weight loss), T50 (temperature at 50% weight loss), and TR (temperature at residual weight). Enhancement in melt (Tm) and crystallisation temperatures (Tc) is are observed due to a heterogeneous nucleation effect. The FESEM analysis concludes that the GNP thickness has a significant effect on the degree of dispersion and agglomeration. The smaller the thickness, the better is the dispersion and the lower is the agglomeration. Overall, the use of thinner GNPs is more advantageous in improving the polymer properties.


2020 ◽  
Vol 1009 ◽  
pp. 43-48
Author(s):  
Sirirat Wacharawichanant ◽  
Paweena Hanjai ◽  
Sanya Khongaio ◽  
Manop Phankokkruad

The work studied the morphological, mechanical and thermal properties of poly(lactic acid) (PLA)/ethylene-octene copolymer (EOC) blends before and after adding the montmorillonite clay surface modified with 25-30% of octadecylamine (clay-ODA). The PLA/EOC blends and composites were prepared by melt mixing in an internal mixer. The EOC contents were 5, 10, 20, 30 wt% and clay-ODA contents were 1 and 3 phr. The morphology analysis showed that the addition of clay-ODA could improve the miscibility of PLA and EOC phases due to the domain size of dispersed EOC phase decreased with increasing clay-ODA content. X-ray diffraction revealed the formation of intercalated/exfoliated structure in PLA/clay-ODA and PLA blend composites. The mechanical properties showed that the impact strength of PLA/EOC blends dramatically increased with increasing EOC content up to 10 wt%. The strain at break of PLA blends increased with increasing EOC content. Moreover, the incorporation of clay-ODA increased significantly Young’s modulus of PLA and PLA/EOC blends with increasing clay-ODA content. The thermal stability of PLA/EOC blends improved with the addition of a small amount of clay-ODA.


2017 ◽  
Vol 730 ◽  
pp. 54-59 ◽  
Author(s):  
Sirirat Wacharawichanant ◽  
Chawisa Wisuttrakarn ◽  
Kasana Chomphunoi

The effects of the montmorillonite clay surface modified with 0.5-5 wt% aminopropyltriethoxysilane and 15-35 wt% octadecylamine (Clay-ASO) and polyethylene-g-maleic anhydride (PE-g-MA) on morphology and mechanical properties of poly (lactic acid) (PLA)/acrylonitrile-butadiene rubber copolymer (NBR) blends were investigated and compared. The PLA/NBR blends and composites were prepared by melt mixing in an internal mixer and molded by compression molding. The ratio of PLA and NBR was 80/20 by weight and the Clay-ASO and PE-g-MA contents were 3, 5 and 7 phr. The morphology analysis showed that the addition of Clay-ASO and PE-g-MA at high content could improve the miscibility of PLA and NBR to be homogeneous blends due to the voids in the polymer matrix were decreased. The tensile properties showed Young’s modulus of the PLA/NBR/Clay-ASO composites was more than that of the PLA/NBR blends and Young’s modulus of composites increased with increasing Clay-ASO content, while the tensile strength and strain at break decreased with increasing Clay-ASO content. The incorporation of PE-g-MA 3 phr could improve the tensile strength, stress at break and strain at break of PLA/NBR blends.


2019 ◽  
Vol 953 ◽  
pp. 47-52
Author(s):  
Sirirat Wacharawichanant ◽  
Attachai Sriwattana ◽  
Kulaya Yaisoon ◽  
Manop Phankokkruad

The effects of the montmorillonite clay surface modified with 0.5-5 wt% aminopropyltriethoxysilane and 15-35% octadecylamine (Clay-APTSO) on morphology, mechanical and thermal properties of poly(lactic acid) (PLA)/ethylene-octene copolymer (EOC)/Clay-APTSO composites were investigated. The blends of PLA/EOC with and without Clay-APTSO were prepared by melt mixing in an internal mixer. Scanning electron microscopy analysis observed the morphology of PLA/EOC blends demonstrated a phase separation of minor phase and matrix phase. The addition of Clay-APTSO in PLA/EOC blends showed significant decreased in droplet size of dispersed EOC phase, thus, Clay-APTSO acted as an effective compatibilizer in the PLA/EOC blends. The results of tensile properties found the decrease of Young’s modulus of PLA when added EOC due to the low modulus and flexibility of EOC. While the incorporation of Clay-APTSO increased significantly Young’s modulus of PLA/EOC blends at low EOC and Clay-APTSO content. The strain at break of the blends increased with the increase of EOC loading, this indicated the presence of EOC enhanced the elongation at break of PLA, while the addition Clay-APTSO reduced the strain at break of PLA/EOC blends. The tensile strength of all blend compositions improved when added Clay-APTSO and the tensile strength showed the highest value at 3 phr of Clay-APTSO. The thermal stability of PLA/EOC blends did not change when compared with neat PLA, and when added Clay-APTSO in the blends could improve the thermal stability of the PLA/EOC blends.


2021 ◽  
Vol 36 (2) ◽  
pp. 93-110
Author(s):  
Princy Philip ◽  
Tomlal Jose ◽  
Sarath KS ◽  
Sunny Kuriakose

Silver nanoparticles with 5–10 nm diameters are synthesised using Couroupita guianensis flower extract. The synthesised silver nanoparticles found to show good antimicrobial activity against gram negative and gram positive bacteria. Poly(methyl methacrylate) nanofibers with pristine, surface roughened and coaxial hollow forms are prepared by electrospinning. The structural and morphological properties of these pure and structurally modified poly(methyl methacrylate) nanofibers are evidenced by various analytical techniques. The antimicrobial studies of poly(methyl methacrylate) nanofibers having different architectures incorporated with silver nanoparticles are carried out. It is found that, all the three forms of poly(methyl methacrylate) nanofibers incorporated with silver nanoparticles show antibacterial properties against both gram positive and gram negative bacteria. Among these, surface roughened poly(methyl methacrylate) nanofibers incorporated with silver nanoparticles show highest antibacterial activity than the other two structural forms. The present study offers an alternative to the existing optical lenses. People especially those who suffer from eye problems can protect their eyes in a better way from infectious agents by wearing optical lens made from C. guianensis stabilised silver nanoparticles incorporated poly(methyl methacrylate) nanofibers than that made from pure poly(methyl methacrylate) nanofibers or films.


Sign in / Sign up

Export Citation Format

Share Document