scholarly journals Approximate Analytical Analysis of Unsteady MHD Mixed Flow of Non-Newtonian Hybrid Nanofluid over a Stretching Surface

Fluids ◽  
2021 ◽  
Vol 6 (4) ◽  
pp. 138
Author(s):  
Ali Rehman ◽  
Zabidin Salleh

This paper analyses the two-dimensional unsteady and incompressible flow of a non-Newtonian hybrid nanofluid over a stretching surface. The nanofluid formulated in the present study is TiO2 + Ag + blood, and TiO2 + blood, where in this combination TiO2 + blood is the base fluid and TiO2 + Ag + blood represents the hybrid nanofluid. The aim of the present research work is to improve the heat transfer ratio because the heat transfer ratio of the hybrid nanofluid is higher than that of the base fluid. The novelty of the recent work is the approximate analytical analysis of the magnetohydrodynamics mixed non-Newtonian hybrid nanofluid over a stretching surface. This type of combination, where TiO2+blood is the base fluid and TiO2 + Ag + blood is the hybrid nanofluid, is studied for the first time in the literature. The fundamental partial differential equations are transformed to a set of nonlinear ordinary differential equations with the guide of some appropriate similarity transformations. The analytical approximate method, namely the optimal homotopy analysis method (OHAM), is used for the approximate analytical solution. The convergence of the OHAM for particular problems is also discussed. The impact of the magnetic parameter, dynamic viscosity parameter, stretching surface parameter and Prandtl number is interpreted through graphs. The skin friction coefficient and Nusselt number are explained in table form. The present work is found to be in very good agreement with those published earlier.

Author(s):  
Nurul Amira Zainal ◽  
Kohilavani Naganthran ◽  
Roslinda Nazar

The study of unsteady flow is essential in various engineering systems, for instance, the periodic fluid motion and start-up process. Therefore, this numerical study focuses on examining the unsteady magnetohydrodynamics (MHD) rear stagnation-point flow in Al2O3-Cu/H2O hybrid nanofluid past a permeable stretching/shrinking surface with the impact of heat generation/absorption. By choosing a suitable similarity transformation, partial differential equations are transformed into a system of nonlinear ordinary differential equations and solved using the bvp4c function in the MATLAB package. The effects of the solution domain’s operating parameters are analysed, and dual solutions are observable as the sheet shrinks. It is found that the addition of the suction parameter escalates the heat transfer efficiency. Eventually, the existence of the unsteadiness parameter and the heat generation/absorption effect significantly encourage heat transfer deterioration.


2020 ◽  
Vol 11 (4) ◽  
pp. 11956-11968

In this article, the impact of hybrid nanoparticles on different physical quantities in a Cu-Fe3O4/ethylene glycol-based hybrid nanofluid is associated with a steady and fully developed natural convective flow over a stretching surface. The investigation's significant results are that the ferrous oxide/ethylene glycol-based hybrid nanofluid enlarged with partial slip parameter undermines the tangential velocity and liquid suction. It causes a minute radial velocity along with temperature distribution through a stretching surface. The analysis is presented in dimensionless form. The transformed equations are solved numerically using Fourth order R-K Fehlberg with shooting technique. It is a phenomenon found in a mixture of mobile particles that exhibit specific responses to temperature strength. The particle moves to the hot clod region in thermal diffusion; then it is called ’‘positive'; otherwise, it is called ’‘negative'. The consequences of this investigation are of significance with evaluating the impact of some essential design parameters on heat transfer and, therefore, in the enhancement of industrial processes.


Author(s):  
Mohammad M. Rahman ◽  
Mohammed M. Al-Hatmi

In this paper we investigate numerically the hydromagnetic boundary layer flow and heat transfer characteristics of a nanofluid using three types of nanoparticles (copper, aluminium oxide and titanium dioxide) having various shapes (spherical, cylindrical, arbitrary, etc) by considering three kinds of base fluids (water, ethylene glycol and engine oil) over a nonlinear inclined stretching surface, taking into account the effect of convective surface condition. Using similarity transformations, the governing nonlinear partial differential equations of the physical model are transformed into non-dimensional ordinary differential equations which are solved for local similar solutions using the very robust computer algebra software, Maple 13. The numerical simulation is carried out to investigate the role of the pertinent parameters on the flow and temperature fields as well as on the rate of heat transfer and on the rate of shear stress. The results show that the addition of nanoparticles to the base fluid may not always increase the rate of heat transfer. It depends significantly on the surface convection, type of base fluid and nanoparticles.  The finding of this study will open a gate for better understanding of nanofluid characteristics.  


2020 ◽  
Vol 1 (01) ◽  
pp. 11-22
Author(s):  
R. Jusoh ◽  
K. Naganthran ◽  
A. Jamaludin ◽  
M.H. Ariff ◽  
M.F.M. Basir ◽  
...  

Hybrid nanofluid has a vast potential of applications in the cooling system due to the high thermal conductivity. This study emphasizes on the impact of the convective boundary condition and viscous dissipation to the heat transfer of Ag-Cu hybrid nanofluid. A suitable similarity transformation is used to transform the partial differential equations of mass, momentum and energy into the ordinary differential equations. A finite difference code known as bvp4c in Matlab is employed to generate the numerical solutions. Stability analysis is conducted since dual solutions are generated in this study and the first solution exhibits the stability properties. The influence of variations in the suction parameter, viscous dissipation, nanoparticles concentration and Biot number on the on the temperature and velocity profiles of the hybrid nanofluid are portrayed. The rate of heat transfer is prominently higher with the augmentation of the Biot number and Ag nanoparticles concentration.


Coatings ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 684
Author(s):  
Saeed Islam ◽  
Haroon Ur Rasheed ◽  
Kottakkaran Sooppy Nisar ◽  
Nawal A. Alshehri ◽  
Mohammed Zakarya

The current analysis deals with radiative aspects of magnetohydrodynamic boundary layer flow with heat mass transfer features on electrically conductive Williamson nanofluid by a stretching surface. The impact of variable thickness and thermal conductivity characteristics in view of melting heat flow are examined. The mathematical formulation of Williamson nanofluid flow is based on boundary layer theory pioneered by Prandtl. The boundary layer nanofluid flow idea yields a constitutive flow laws of partial differential equations (PDEs) are made dimensionless and then reduce to ordinary nonlinear differential equations (ODEs) versus transformation technique. A built-in numerical algorithm bvp4c in Mathematica software is employed for nonlinear systems computation. Considerable features of dimensionless parameters are reviewed via graphical description. A comparison with another homotopic approach (HAM) as a limiting case and an excellent agreement perceived.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Fazle Mabood ◽  
Anum Shafiq ◽  
Waqar Ahmed Khan ◽  
Irfan Anjum Badruddin

Purpose This study aims to investigate the irreversibility associated with the Fe3O4–Co/kerosene hybrid-nanofluid past a wedge with nonlinear radiation and heat source. Design/methodology/approach This study reports the numerical analysis of the hybrid nanofluid model under the implications of the heat source and magnetic field over a static and moving wedge with slips. The second law of thermodynamics is applied with nonlinear thermal radiation. The system that comprises differential equations of partial derivatives is remodeled into the system of differential equations via similarity transformations and then solved through the Runge–Kutta–Fehlberg with shooting technique. The physical parameters, which emerges from the derived system, are discussed in graphical formats. Excellent proficiency in the numerical process is analyzed by comparing the results with available literature in limiting scenarios. Findings The significant outcomes of the current investigation are that the velocity field uplifts for higher velocity slip and magnetic strength. Further, the heat transfer rate is reduced with the incremental values of the Eckert number, while it uplifts with thermal slip and radiation parameters. An increase in Brinkmann’s number uplifts the entropy generation rate, while that peters out the Bejan number. The results of this study are of importance involving in the assessment of the effect of some important design parameters on heat transfer and, consequently, on the optimization of industrial processes. Originality/value This study is original work that reports the hybrid nanofluid model of Fe3O4–Co/kerosene.


2016 ◽  
Vol 1 (2) ◽  
pp. 603-616 ◽  
Author(s):  
Marek Lampart ◽  
Jaroslav Zapoměl

AbstractThis paper concentrates on the vibrations attenuation of a rotor driven by a DC motor and its frame flexibly coupled with a baseplate by linear cylindrical helical springs and damped by an element that can work either in inertia or impact regime. The system oscillation is governed by three mutually coupled second-order ordinary differential equations. The nonlinear behaviour occurs if the impact regime is adjusted. The damping element operating in inertia mode reduces efficiently the oscillations amplitude only in a narrow frequency interval. In contrast, the damping device working in impact regime attenuates vibrations of the rotor frame in a wider range of the excitation frequencies and it can be easily extended if the clearances between the rotor casing and the damping element are controlled. The development of a computational procedure for investigation of vibration of a flexibly supported rotor and for its attenuation by the inertia and impact dampers; learning more on efficiency of the individual damping regimes; finding possibilities of extension of the frequency intervals of applicability of the damping device; and obtaining more information on the character of the vibration induced by impacts are the main contributions of this research work.


Coatings ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1242
Author(s):  
Umair Khan ◽  
Aurang Zaib ◽  
Anuar Ishak ◽  
Fahad S. Al-Mubaddel ◽  
Sakhinah Abu Bakar ◽  
...  

The present study reveals the behavior of shear-thickening and shear-thinning fluids in magnetohydrodynamic flow comprising the significant impact of a hybrid nanofluid over a porous radially shrinking/stretching disc. The features of physical properties of water-based Ag/TiO2 hybrid nanofluid are examined. The leading flow problem is formulated initially in the requisite form of PDEs (partial differential equations) and then altered into a system of dimensionless ODEs (ordinary differential equations) by employing suitable variables. The renovated dimensionless ODEs are numerically resolved using the package of boundary value problem of fourth-order (bvp4c) available in the MATLAB software. The non-uniqueness of the results for the various pertaining parameters is discussed. There is a significant enhancement in the rate of heat transfer, approximately 13.2%, when the impact of suction governs about 10% in the boundary layer. Therefore, the heat transport rate and the thermal conductivity are greater for the new type of hybrid nanofluid compared with ordinary fluid. The bifurcation of the solutions takes place in the problem only for the shrinking case. Moreover, the sketches show that the nanoparticle volume fractions and the magnetic field delay the separation of the boundarylayer.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Faraz Afshari ◽  
Azim Doğuş Tuncer ◽  
Adnan Sözen ◽  
Halil Ibrahim Variyenli ◽  
Ataollah Khanlari ◽  
...  

Purpose Using suspended nanoparticles in the base fluid is known as one of the most efficient ways for heat transfer augmentation and improving the thermal efficiency of various heat exchangers. Different types of nanofluids are available and used in different applications. The main purpose of this study is to investigate the effects of using hybrid nanofluid and number of plates on the performance of plate heat exchanger. In this study, TiO2/water single nanofluid and TiO2-Al2O3/water hybrid nanofluid with 1% particle weight ratio have been used to prepare hybrid nanofluid to use in plate type heat exchangers with three various number of plates including 8, 12 and 16. Design/methodology/approach The experiments have been conducted with the aim of examining the impact of plates number and used nanofluids on heat transfer enhancement. The performance tests have been done at 40°C, 45°C, 50°C and 55°C set outlet temperatures and in five various Reynolds numbers between 1,600 and 3,800. Also, numerical simulation has been applied to verify the heat and flow behavior inside the heat exchangers. Findings The results indicated that using both nanofluids raised the thermal performance of all tested exchangers which have a various number of plates. While the major outcomes of this study showed that TiO2-Al2O3/water hybrid nanofluid has priority when compared to TiO2/water single type nanofluid. Utilization of TiO2-Al2O3/water nanofluid led to obtaining an average improvement of 7.5%, 9.6% and 12.3% in heat transfer of heat exchangers with 8, 12 and 16 plates, respectively. Originality/value In the present work, experimental and numerical analyzes have been conducted to investigate the influence of using TiO2-Al2O3/water hybrid nanofluid in various plate heat exchangers. The attained findings showed successful utilization of TiO2-Al2O3/water nanofluid. Based on the obtained results increasing the number of plates in the heat exchanger caused to obtain more increment by using both types of nanofluids.


Author(s):  
Amar B. Patil ◽  
Vishwambhar S. Patil ◽  
Pooja P. Humane ◽  
Nalini S. Patil ◽  
Govind R. Rajput

The present work deals with chemically reacting unsteady magnetohydrodynamic Maxwell nanofluid flow past an inclined permeable stretching surface embedded in a porous medium with thermal radiation. The formulated governing partial differential equations conveying the flow model of Maxwell with Buongiorno modeled nanofluid is transformed into the system of highly non-linear ordinary differential equations via suitable similarity transformations; those equations are transmuted into an initial value problem and then solved numerically by a shooting approach with Runge–-Kutta fourth-order schema. To obtain the physical insight of the flow situation, the influence of associated parameters on the velocity, temperature, and concentration profiles is sketched graphically with the aid of MATLAB software. Furthermore, engineering quantities of interest are interpreted graphically. The computed numerical results are compared to estimate the validity of the achieved results; it has been found out that the computed results are highly accurate. The impact of the Maxwell parameter and inclination angle of the sheet on the velocity field is observed in decaying. Both thermal and solutal energy transport are progressive in nature as the Maxwell parameter and thermophoresis parameter grows, and a reverse trend is observed for Prandtl number.


Sign in / Sign up

Export Citation Format

Share Document