scholarly journals Saproxylic species are linked to the amount and isolation of dead wood across spatial scales in a beech forest

2020 ◽  
Author(s):  
Elena Haeler ◽  
Ariel Bergamini ◽  
Stefan Blaser ◽  
Christian Ginzler ◽  
Karin Hindenlang ◽  
...  

Abstract Context Dead wood is a key habitat for saproxylic species, which are often used as indicators of habitat quality in forests. Understanding how the amount and spatial distribution of dead wood in the landscape affects saproxylic communities is therefore important for maintaining high forest biodiversity. Objectives We investigated effects of the amount and isolation of dead wood on the alpha and beta diversity of four saproxylic species groups, with a focus on how the spatial scale influences results. Methods We inventoried saproxylic beetles, wood-inhabiting fungi, and epixylic bryophytes and lichens on 62 plots in the Sihlwald forest reserve in Switzerland. We used GLMs to relate plot-level species richness to dead wood amount and isolation on spatial scales of 20–200 m radius. Further, we used GDMs to determine how dead wood amount and isolation affected beta diversity. Results A larger amount of dead wood increased beetle richness on all spatial scales, while isolation had no effect. For fungi, bryophytes and lichens this was only true on small spatial scales. On larger scales of our study, dead wood amount had no effect, while greater isolation decreased species richness. Further, we found no strong consistent patterns explaining beta diversity. Conclusions Our multi-taxon study shows that habitat amount and isolation can strongly differ in the spatial scale on which they influence local species richness. To generally support the species richness of different saproxylic groups, dead wood must primarily be available in large amounts but should also be evenly distributed because negative effects of isolation already showed at scales under 100 m.

2019 ◽  
Author(s):  
Fabien Laroche ◽  
Manon Balbi ◽  
Théophile Grébert ◽  
Franck Jabot ◽  
Frédéric Archaux

AbstractThe Theory of Island Biogeography (TIB) promoted the idea that species richness within sites depends on site connectivity, i.e. its connection with surrounding potential sources of immigrants. TIB has been extended to a wide array of fragmented ecosystems, beyond archipelagoes, surfing on the analogy between habitat patches and islands and on the patch-matrix framework. However, patch connectivity often little contributes to explaining species richness in empirical studies. Before interpreting this trend as questioning the broad applicability of TIB principles, one first needs a clear identification of methods and contexts where strong effects of patch structural connectivity are likely to occur. Here, we use spatially explicit simulations of neutral metacommunities to show that patch connectivity effect on local species richness is maximized under a set of specific conditions: (i) patch delineation should be fine enough to ensure that no dispersal limitation occurs within patches, (ii) patch connectivity indices should be scaled according to target organisms’ dispersal distance and (iii) the habitat amount around sampled sites (within a distance adapted to organisms’ dispersal) should be highly variable. When those three criteria are met, the absence of an effect of connectivity on species richness should be interpreted as contradicting TIB hypotheses


Diversity ◽  
2020 ◽  
Vol 12 (3) ◽  
pp. 101 ◽  
Author(s):  
Sándor Bartha ◽  
Roberto Canullo ◽  
Stefano Chelli ◽  
Giandiego Campetella

Patterns of diversity across spatial scales in forest successions are being overlooked, despite their importance for developing sustainable management practices. Here, we tested the recently proposed U-shaped biodiversity model of forest succession. A chronosequence of 11 stands spanning from 5 to 400 years since the last disturbance was used. Understory species presence was recorded along 200 m long transects of 20 × 20 cm quadrates. Alpha diversity (species richness, Shannon and Simpson diversity indices) and three types of beta diversity indices were assessed at multiple scales. Beta diversity was expressed by a) spatial compositional variability (number and diversity of species combinations), b) pairwise spatial turnover (between plots Sorensen, Jaccard, and Bray–Curtis dissimilarity), and c) spatial variability coefficients (CV% of alpha diversity measures). Our results supported the U-shaped model for both alpha and beta diversity. The strongest differences appeared between active and abandoned coppices. The maximum beta diversity emerged at characteristic scales of 2 m in young coppices and 10 m in later successional stages. We conclude that traditional coppice management maintains high structural diversity and heterogeneity in the understory. The similarly high beta diversities in active coppices and old-growth forests suggest the presence of microhabitats for specialist species of high conservation value.


2020 ◽  
Author(s):  
Santiago Saura

AbstractThe Habitat Amount Hypothesis (HAH) predicts that species richness, abundance or occurrence in a habitat site increases with the amount of habitat in the ‘local landscape’ defined by an appropriate distance around the site, with no distinct effects of the size of the habitat patch in which the site is located. It has been stated that a consequence of the HAH, if supported, would be that it is unnecessary to consider habitat configuration to predict or manage biodiversity patterns, and that conservation strategies should focus on habitat amount regardless of fragmentation. Here, I assume that the HAH holds and apply the HAH predictions to all habitat sites over entire landscapes that have the same amount of habitat but differ in habitat configuration. By doing so, I show that the HAH actually implies clearly negative effects of habitat fragmentation, and of other spatial configuration changes, on species richness, abundance or occurrence in all or many of the habitat sites in the landscape, and that these habitat configuration effects are distinct from those of habitat amount in the landscape. I further show that, contrary to current interpretations, the HAH is compatible with a steeper slope of the species-area relationship for fragmented than for continuous habitat, and with higher species richness or abundance for a single large patch than for several small patches with the same total area (SLOSS). This suggests the need to revise the ways in which the HAH has been interpreted and can be actually tested. The misinterpretation of the HAH has arisen from confounding and overlooking the differences in the spatial scales involved: the individual habitat site at which the HAH gives predictions, the local landscape around an individual site, and the landscapes or regions (with multiple habitat sites and different local landscapes) that need to be analysed and managed. The HAH has been erroneously viewed as negating or diminishing the relevance of fragmentation effects, while it actually supports the importance of habitat configuration for biodiversity. I conclude that, even in the cases where the HAH holds, habitat fragmentation and configuration are important for understanding and managing species distributions in the landscape.


2021 ◽  
Author(s):  
José Hidasi-Neto ◽  
Nicole Mércia Alves Gomes ◽  
Nelson Silva Pinto

Climate Change is already seen as one of the biggest threats to biodiversity in the 21 st century. Not much studies direct attention to its effects on whole communities of threatened hotspots. In the present work, we combine ecological niche modelling (ENM) with a future climate scenario of greenhouse gases emissions to study the future changes in alpha and beta diversity of birds of the Brazilian Cerrado biome, a hotspot of biodiversity with high velocity of climate change and agricultural expansion. In general, we found heterogeneous results for changes in species richness, spatial and temporal taxonomic and functional beta diversity, and mean ecological distinctiveness. Contrary to a previous study on Cerrado mammals, species richness is expected to increase in Northern Cerrado, where homogenization of communities (decreasing spatial turnover) is also expected to occur especially through local invasions. We show that biotic homogenization (which is composed of local extinction of natives and local invasion of exotic species) will occur in two biological groups but through different subprocesses: local extinctions for mammals and local invasions for birds. Distinct conservation management actions should be directed depending on the outcomes of analyzes of alpha and spatial and temporal beta diversity, for example controlling species invasions in Northern Cerrado. Conservation studies should continue evaluating Cerrado in Brazil even under covid pandemic, as environmental situation in the country is not good and incentives for scientific studies are almost nonexistent.


1992 ◽  
Vol 6 ◽  
pp. 266-266 ◽  
Author(s):  
J. John Sepkoski ◽  
Arnold I. Miller

Global diversity often is treated as a barometer of evolutionary success of clades without reference to their occurrence in ecological or biogeographical space. But global diversity is a composite of various spatial scales: alpha diversity, the number of taxa co-occurring in local communities; beta diversity, the distinction in taxonomic composition among local communities; and gamma diversity, the distinction, or degree of endemism, among geographic provinces, It has been argued by some workers that global diversity correlates strongly with alpha (and beta) diversity but by others that provinciality is the principal control of global patterns. The distinction is important, implicating either ecological processes (“adaptation”) or physical geography (“contingency”) as the major factor in expansion of clades.We have examined the ecological half of this problem with a data base comprising 505 fossil assemblages sampled from Paleozoic strata of Laurentian North America. On the basis of associated sedimentary characteristics, each assemblage has been assigned to one of six environmental categories, ranging from onshore peritidal situations to offshore basinal conditions. For each taxonomic order and class, average numbers of genera in each category have been determined for each of 18 time units. These average alpha diversities have been contoured on time-environment diagrams and compared to patterns of global diversity.Three major generalizations are derived from these diagrams:1. Major groups tend to be environmentally conservative, maintaining their life zones of maximum and minimum alpha diversity over vast stretches of time.2. Onshore-offshore shifts are most common during early expansion or late contraction of groups, when their global diversity is rapidly waxing or (more slowly) waning.3. Maxima and minima in global diversity within the groups through time, with few exceptions, are reflected in alpha diversity as fluctuations within the environments of maximum richness and/or as variations in the range of environments occupied.The last observation indicates a tight link between local ecology and global diversity, although the direction of causation is not unambiguous: alpha diversity could be reflecting only the global pool from which species can be recruited into local communities. However, in view of the onshore-offshore shifts during early and late histories of clades we conclude that local ecology is the dominant factor in controlling global diversity, and provinciality is secondary.


<em>Abstract</em>.—Community ecology increasingly seeks to integrate the influences of regional and historical processes with species interactions within local habitats. This broadened perspective is largely based on comparative approaches that employ “natural experiments” to identify factors shaping community structure. Because coastal rivers are separated from one another by insurmountable barriers (oceans or land), freshwater fishes are particularly well suited for comparative analyses of factors that influence fish community organization. In this chapter, we review how this comparative approach shed light on large-scale biodiversity gradients, community saturation, community convergence, density compensation, and the role of intrinsic and extrinsic factors in community dynamics. The main factors (e.g., river mouth discharge and history) empirically related to species richness of a river are well identified, and metacommunity ecology provides a fruitful conceptual framework for understanding how regional (river) species richness translates into local species richness. Much work remains to identify factors explaining differences among whole river basin assemblages with regard to ecological traits (e.g., trophic status and life history) composition and to assess whether trait-related environmental and biotic local filters act similarly over large spatial scales. One important conclusion that can be drawn from the studies reviewed here is that history cannot be neglected whatever the scale of investigation (global, river, or site). A second conclusion is that historical effects are not strong enough to blur the occurrence of qualitatively repeatable patterns of community structure over large spatial scale, which is encouraging because it suggests development of general predictive models of community structure is an attainable goal.


2018 ◽  
Vol 11 ◽  
pp. 49-62 ◽  
Author(s):  
Khem Raj Bhattarai

 It is now realized that the variation in species richness is influenced by spatial and temporal scales. Pattern and scale are a central focus in ecology and biogeography. The species richness relationship depends on the scale of study and their correlated factors. The broad objective of this review is to elucidate how different scales are correlated with different explanatory variables to generate patterns of species richness. Addressing the problem of scale has both fundamental and applied importance in understanding variation in species richness along gradients. The understanding of pattern, its causes, and consequences is central to our understanding of processes such as succession, community development, and the spread and persistence of species. According to the hierarchical theory of species diversity there are mainly three categories of scales: local, landscape and regional. The local species richness or α-diversity is the diversity of individual stands. The β-diversity or species change is turnover between two elevational bands or between two plots or two sites. The regional or γ-diversity is the total richness of whole mountains or study systems and it has a combined influence from α- and β-diversity. The local species richness is affected by both local-scale processes (e.g., internal interactions) and broad-scale processes (e.g., evolutionary). Different explanatory variables according to the scales of study are necessary to explain variation at different spatial scales. Local factors (e.g., disturbance, grazing and tree cover) have been used to detect variation at a local scale. Generally, topographical factors are used to detect variation in species richness at a landscape scale; whereas climate, water-energy dynamics and historical processes are used to detect variation at a regional scale. However, it is not easy to separate strictly one scale from other because there is no clear boundary between them. The study of the whole elevation gradient from tropical to alpine zone or long latitude is a broad-scale study. The intermediate scale is a study on a local mountain, which covers the subtropical to warm temperate zones. To explain patterns of species richness, a pluralistic body of hypotheses, which incorporates historical, biological and climatic factors, is needed. This is depicted by the strong relationship between climate, biological interactions, and historical processes in influencing variation in species richness at different spatial scales.Botanica Orientalis – Journal of Plant Science (2017) 11: 49–62


2018 ◽  
Vol 5 (9) ◽  
pp. 181168 ◽  
Author(s):  
Rachakonda Sreekar ◽  
Masatoshi Katabuchi ◽  
Akihiro Nakamura ◽  
Richard T. Corlett ◽  
J. W. Ferry Slik ◽  
...  

The relationship between β-diversity and latitude still remains to be a core question in ecology because of the lack of consensus between studies. One hypothesis for the lack of consensus between studies is that spatial scale changes the relationship between latitude and β-diversity. Here, we test this hypothesis using tree data from 15 large-scale forest plots (greater than or equal to 15 ha, diameter at breast height ≥ 1 cm) across a latitudinal gradient (3–30 o ) in the Asia-Pacific region. We found that the observed β-diversity decreased with increasing latitude when sampling local tree communities at small spatial scale (grain size ≤0.1 ha), but the observed β-diversity did not change with latitude when sampling at large spatial scales (greater than or equal to 0.25 ha). Differences in latitudinal β-diversity gradients across spatial scales were caused by pooled species richness (γ-diversity), which influenced observed β-diversity values at small spatial scales, but not at large spatial scales. Therefore, spatial scale changes the relationship between β-diversity, γ-diversity and latitude, and improving sample representativeness avoids the γ-dependence of β-diversity.


Alpine Botany ◽  
2020 ◽  
Vol 130 (2) ◽  
pp. 141-156
Author(s):  
Tobias Zehnder ◽  
Andreas Lüscher ◽  
Carmen Ritzmann ◽  
Caren M. Pauler ◽  
Joel Berard ◽  
...  

Abstract Abandonment of pastures and successional shrub expansion are widespread in European mountain regions. Moderate shrub encroachment is perceived beneficial for plant diversity by adding new species without outcompeting existing ones, yet systematic evidence is missing. We surveyed vegetation along 24 transects from open pasture into shrubland across the Swiss Alps using a new protocol distinguishing different spatial scales, shrub cover of each plot (2 × 2 m) and larger-scale zonal cover along the transect. Data were analysed using generalized linear models of shrub cover, shrub species and environmental conditions, such as geology, aspect or soil. Most shrub communities were dominated by Alnus viridis (62% of transects) and Pinus mugo (25%), and the rest by other shrub species (13%). These dominant shrub species explained vegetation response to shrub cover well, without need of environmental variables in the model. Compared to open pasture, A. viridis resulted in an immediate linear decline in plant species richness and a marginal increase in beta-diversity (maximally + 10% at 35% cover). Dense A. viridis hosted 62% less species than open pasture. In P. mugo, species richness remained stable until 40% shrub cover and dropped thereafter; beta-diversity peaked at 35% cover. Hence, scattered P. mugo increases beta-diversity without impairing species richness. In transects dominated by other shrubs, species richness and beta-diversity peaked at 40–60% shrub cover (+ 23% both). A. viridis reduced species richness in a larger area around the shrubs than P. mugo. Therefore, effects of shrub encroachment on plant diversity cannot be generalized and depend on dominant shrub species.


2019 ◽  
Vol 112 (4) ◽  
pp. 409-417
Author(s):  
Ma Ventura Rosas-Echeverría ◽  
Carlos Alfredo Coyote-Ávila ◽  
Karla Maria Aguilar-Dorantes ◽  
Concepcion Martínez-Peralta

AbstractIn this study, we carried out an inventory of butterfly diversity and an analysis of alpha and beta diversity considering the effects of phenology and degree of disturbance in tropical dry forest. The study included three localities: Cañadas de Ajuchitlán and El Limón, situated within the Sierra de Huautla Biosphere Reserve (REBIOSH) natural protected area, and San Miguel de los Elotes, which is outside of the REBIOSH. We systematically sampled each of the localities using two collection methods once per month for a full year (April 2013 to March 2014). A total of 4,017 specimens belonging to 119 species and 83 genera were collected. We recorded for the first time the presence of Perichares aurina Evans (Lepidoptera, Hesperiidae), in Mexico, 14 additional Hesperiidae species were new records for Morelos, Mexico, and 16% of the species recorded in this study are endemic to Mexico. Species richness was highest in August for the two localities (Cañadas de Ajuchitlán and El Limón), located within the REBIOSH. Species richness was highest in November for San Miguel de los Elotes, which is outside of the REBIOSH. In terms of the alpha diversity values (0D, observed diversity), Cañadas de Ajuchitlán had the highest species richness. In the analysis of similarity (Beta diversity), the two localities within the REBIOSH had the highest species similarity, despite being the most geographically distant.


Sign in / Sign up

Export Citation Format

Share Document