scholarly journals Optimal electromechanical bandgaps in piezo-embedded mechanical metamaterials

Author(s):  
Ankur Dwivedi ◽  
Arnab Banerjee ◽  
Sondipon Adhikari ◽  
Bishakh Bhattacharya

AbstractElastic mechanical metamaterials are the exemplar of periodic structures. These are artificially designed structures having idiosyncratic physical properties like negative mass and negative Young’s modulus in specific frequency ranges. These extreme physical properties are due to the spatial periodicity of mechanical unit cells, which exhibit local resonance. That is why scientists are researching the dynamics of these structures for decades. This unusual dynamic behavior is frequency contingent, which modulates wave propagation through these structures. Locally resonant units in the designed metamaterial facilitate bandgap formation virtually at any frequency for wavelengths much higher than the lattice length of a unit. Here, we analyze the band structure of piezo-embedded negative mass metamaterial using the generalized Bloch theorem. For a finite number of the metamaterial units coupled equation of motion of the system is deduced, considering purely resistive and shunted inductor energy harvesting circuits. Successively, the voltage and power produced by piezoelectric material along with transmissibility of the system are computed using the backward substitution method. The addition of the piezoelectric material at the resonating unit increases the complexity of the solution. The results elucidate, the insertion of the piezoelectric material in the resonating unit provides better tunability in the band structure for simultaneous energy harvesting and vibration attenuation. Non-dimensional analysis of the system gives physical parameters that govern the formation of mechanical and electromechanical bandgaps. Optimized numerical values of these system parameters are also found for maximum first attenuation bandwidth. Thus, broader bandgap generation enhances vibration attenuation, and energy harvesting can be simultaneously available, making these structures multifunctional. This exploration can be considered as a step towards the active elastic mechanical metamaterials design.

2020 ◽  
Vol 31 (8) ◽  
pp. 1076-1090 ◽  
Author(s):  
Ankur Dwivedi ◽  
Arnab Banerjee ◽  
Bishakh Bhattacharya

Mechanical metamaterials are uniquely engineered form of periodically arranged unit cells that exhibit interesting frequency-dependent physical properties like negative effective mass, Young’s modulus and Poisson’s ratio. These extreme engineering properties are beyond the natural properties of a material, which can modulate the propagation of wave. In this article, a mechanical realization of one of these uncommon properties called negative stiffness is emulated through analytical simulation. Wave propagation in metamaterials is contingent on frequency, which in turn results in transmission and attenuation bands. Simultaneous vibration control and energy harvesting can be executed by embedding energy harvesting smart material within the resonating units of the metamaterial. However, this needs careful design studies to outline the range of parameters. In this work, first, the band structure of a piezo-embedded negative stiffness metamaterial is studied using generalized Bloch’s theorem. Subsequently, harvested power along with the transmissibility is computed for a chain of finite number of metamaterial units by using backward substitution method. The results of the parametric studies elucidate that piezo-embedded negative stiffness metamaterial can enhance the performance in terms of vibration attenuation and harvested energy.


Author(s):  
Mohammad A. Bukhari ◽  
Feng Qian ◽  
Oumar R. Barry ◽  
Lei Zuo

Abstract The study of simultaneous energy harvesting and vibration attenuation has recently been the focus in many acoustic meta-materials investigations. The studies have reported the possibility of harvesting electric power using electromechanical coupling; however, the effect of the electromechanical resonator on the obtained bandgap’s boundaries has not been explored yet. In this paper, we investigate metamaterial coupled to electromechanical resonators to demonstrate the effect of electromechanical coupling on the wave propagation analytically and experimentally. The electromechanical resonator is shunted to an external load resistor to harvest energy. We derive the analytical dispersion curve of the system and show the band structure for different load resistors and electromechanical coupling coefficients. To verify the analytical dispersion relations, we also simulate the system numerically. Furthermore, experiment is carried out to validate the analytical observations. The obtained observations can guide designers in selecting electromechanical resonator parameters for effective energy harvesting from meta-materials.


Author(s):  
Christopher Sugino ◽  
Stephen Leadenham ◽  
Massimo Ruzzene ◽  
Alper Erturk

Metamaterials made from flexible structures with piezoelectric laminates connected to resonant shunt circuits can exhibit vibration attenuation properties similar to those of their purely mechanical locally resonant counterparts. Thus, in analogy to purely mechanical metamaterials, electroelastic metamaterials with piezoelectric resonators can exhibit vibration attenuation bandgaps. To enable the effective design of these locally resonant electroelastic metamaterials, the electromechanical behavior of the piezoelectric patches must be reconciled with the modal behavior of the electroelastic structure. To this end, we develop a novel argument for the formation of bandgaps in bimorph piezoelectric beams, relying on modal analysis and the assumption of infinitely many segmented shunted electrodes (unit cells) on continuous piezoelectric laminates bracketing a substrate. As a case study, the frequency limits of the locally resonant bandgap that forms from resonant shunting is derived, and a design guideline is presented to place the bandgap in a desired frequency range. This method can be easily extended to more general circuit impedances, and can be used to design shunt circuits to obtain a desired frequency response in the main structure.


Author(s):  
Dawei Zhu ◽  
Xiuchang Huang ◽  
Hongxing Hua ◽  
Hui Zheng

Owing to their locally resonant mechanism, internal resonators are usually used to provide band gaps in low-frequency region for many types of periodic structures. In this study, internal resonators are used to improve the vibration attenuation ability of finite periodic tetra-chiral coating, enabling high reduction of the radiated sound power by a vibrating stiffened plate. Based on the Bloch theorem and finite element method, the band gap characteristics of tetra-chiral unit cells filled with and without internal resonators are analysed and compared to reveal the relationship between band gaps and vibration modes of such tetra-chiral unit cells. The rotational vibration of internal resonators can effectively strengthen the vibration attenuation ability of tetra-chiral lattice and extend the effective frequency range of vibration attenuation. Two tetra-chiral lattices with and without internal resonators are respectively designed and their vibration transmissibilities are measured using the hammering method. The experimental results confirm the vibration isolation effect of the internal resonators on the finite periodic tetra-chiral lattice. The tetra-chiral lattice as an acoustic coating is applied to a stiffened plate, and analysis results indicate that the internal resonators can obviously enhance the vibration attenuation ability of tetra-chiral lattice coating in the frequency range of the band gap corresponding to the rotating vibration mode of internal resonators. When the soft rubber with the internal resonators in tetra-chiral layers has gradient elastic modulus, the vibration attenuation ability and noise reduction of the tetra-chiral lattice coating are basically enhanced in the frequency range of the corresponding band gaps of tetra-chiral unit cells.


2021 ◽  
Vol 7 (9) ◽  
pp. eabf1966
Author(s):  
Hang Zhang ◽  
Jun Wu ◽  
Daining Fang ◽  
Yihui Zhang

Multistable mechanical metamaterials are artificial materials whose microarchitectures offer more than two different stable configurations. Existing multistable mechanical metamaterials mainly rely on origami/kirigami-inspired designs, snap-through instability, and microstructured soft mechanisms, with mostly bistable fundamental unit cells. Scalable, tristable structural elements that can be built up to form mechanical metamaterials with an extremely large number of programmable stable configurations remains illusive. Here, we harness the elastic tensile/compressive asymmetry of kirigami microstructures to design a class of scalable X-shaped tristable structures. Using these structure as building block elements, hierarchical mechanical metamaterials with one-dimensional (1D) cylindrical geometries, 2D square lattices, and 3D cubic/octahedral lattices are designed and demonstrated, with capabilities of torsional multistability or independent controlled multidirectional multistability. The number of stable states increases exponentially with the cell number of mechanical metamaterials. The versatile multistability and structural diversity allow demonstrative applications in mechanical ternary logic operators and amplitude modulators with unusual functionalities.


Energies ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2171
Author(s):  
Hyeonsu Han ◽  
Junghyuk Ko

Along with the increase in renewable energy, research on energy harvesting combined with piezoelectric energy is being conducted. However, it is difficult to predict the power generation of combined harvesting because there is no data on the power generation by a single piezoelectric material. Before predicting the corresponding power generation and efficiency, it is necessary to quantify the power generation by a single piezoelectric material alone. In this study, the generated power is measured based on three parameters (size of the piezoelectric ceramic, depth of compression, and speed of compression) that contribute to the deformation of a single PZT (Lead zirconate titanate)-based piezoelectric element. The generated power was analyzed by comparing with the corresponding parameters. The analysis results are as follows: (i) considering the difference between the size of the piezoelectric ceramic and the generated power, 20 mm was the most efficient piezoelectric ceramic size, (ii) considering the case of piezoelectric ceramics sized 14 mm, the generated power continued to increase with the increase in the compression depth of the piezoelectric ceramic, and (iii) For piezoelectric ceramics of all diameters, the longer the depth of deformation, the shorter the frequency, and depending on the depth of deformation, there is a specific frequency at which the charging power is maximum. Based on the findings of this study, PZT-based elements can be applied to cases that receive indirect force, including vibration energy and wave energy. In addition, the power generation of a PZT-based element can be predicted, and efficient conditions can be set for maximum power generation.


Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 711
Author(s):  
Zdzisław Kaliniewicz ◽  
Dariusz J. Choszcz

Viburnum is a genus of colorful and ornamental plants popular in landscape design on account of their high esthetic appeal. The physical properties of viburnum seeds have not been investigated in the literature to date. Therefore, the aim of this study was to characterize the seeds of selected Viburnum species and to search for potential relationships between their physical attributes for the needs of seed sorting operations. The basic physical parameters of the seeds of six Viburnum species were measured, and the relationships between these attributes were determined in correlation and regression analyses. The average values of the evaluated parameters were determined in the following range: terminal velocity—from 5.6 to 7.9 m s−1, thickness—from 1.39 to 1.87 mm, width—from 3.59 to 6.33 mm, length—from 5.58 to 7.44 mm, angle of external friction—from 36.7 to 43.8°, mass—from 16.7 to 35.0 mg. The seeds of V. dasyanthum, V. lentago and V. sargentii should be sorted in air separators, and the seeds of V. lantana and V. opulus should be processed with the use of mesh screens with round apertures to obtain uniform size fractions. The seeds of V. rhytodophyllum cannot be effectively sorted into batches with uniform seed mass, but they can be separated into groups with similar dimensions.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1266
Author(s):  
Jun Zheng ◽  
Bin Dou ◽  
Zilong Li ◽  
Tianyu Wu ◽  
Hong Tian ◽  
...  

A while-drilling energy harvesting device is designed in this paper to recovery energy along with the longitudinal vibration of the drill pipes, aiming to serve as a continuous power supply for downhole instruments during the drilling procedure. Radial size of the energy harvesting device is determined through the drilling engineering field experience and geological survey reports. A piezoelectric coupling model based on the selected piezoelectric material was established via COMSOL Multiphysics numerical simulation. The forced vibration was analyzed to determine the piezoelectric patch length range and their best installation positions. Modal analysis and frequency response research indicate that the natural frequency of the piezoelectric cantilever beam increased monotonously with the increase of the piezoelectric patch’ thickness before reaching an inflection point. Moreover, the simulation results imply that the peak voltage of the harvested energy varied in a regional manner with the increase of the piezoelectric patches. When the thickness of the piezoelectric patches was 1.2–1.4 mm, the designed device gained the best energy harvest performance with a peak voltage of 15–40 V. Works in this paper provide theoretical support and design reference for the application of the piezoelectric material in the drilling field.


2002 ◽  
Vol 17 (06n07) ◽  
pp. 798-803 ◽  
Author(s):  
C. VILLARREAL ◽  
R. ESQUIVEL-SIRVENT ◽  
G. H. COCOLETZI

The Casimir force between inhomogeneous slabs that exhibit a band-like structure is calculated. The slabs are made of basic unit cells each made of two layers of different materials. As the number of unit cells increases the Casimir force between the slabs changes, since the reflectivity develops a band-like structure characterized by frequency regions of high reflectivity. This is also evident in the difference of the local density of states between free and boundary distorted vacuum, that becomes maximum at frequencies corresponding to the band gaps. The calculations are restricted to vacuum modes with wave vectors perpendicular to the slabs.


Sign in / Sign up

Export Citation Format

Share Document