scholarly journals Hierarchical mechanical metamaterials built with scalable tristable elements for ternary logic operation and amplitude modulation

2021 ◽  
Vol 7 (9) ◽  
pp. eabf1966
Author(s):  
Hang Zhang ◽  
Jun Wu ◽  
Daining Fang ◽  
Yihui Zhang

Multistable mechanical metamaterials are artificial materials whose microarchitectures offer more than two different stable configurations. Existing multistable mechanical metamaterials mainly rely on origami/kirigami-inspired designs, snap-through instability, and microstructured soft mechanisms, with mostly bistable fundamental unit cells. Scalable, tristable structural elements that can be built up to form mechanical metamaterials with an extremely large number of programmable stable configurations remains illusive. Here, we harness the elastic tensile/compressive asymmetry of kirigami microstructures to design a class of scalable X-shaped tristable structures. Using these structure as building block elements, hierarchical mechanical metamaterials with one-dimensional (1D) cylindrical geometries, 2D square lattices, and 3D cubic/octahedral lattices are designed and demonstrated, with capabilities of torsional multistability or independent controlled multidirectional multistability. The number of stable states increases exponentially with the cell number of mechanical metamaterials. The versatile multistability and structural diversity allow demonstrative applications in mechanical ternary logic operators and amplitude modulators with unusual functionalities.

Author(s):  
Lu Lu ◽  
Xiangxin Dang ◽  
Fan Feng ◽  
Pengyu Lv ◽  
Huiling Duan

Kresling origami has recently been widely used to design mechanical metamaterials, soft robots and smart devices, benefiting from its bistability and compression-twist coupling deformation. However, previous studies mostly focus on the traditional parallelogram Kresling patterns which can only be folded to cylindrical configurations. In this paper, we generalize the Kresling patterns by introducing free-form quadrilateral unit cells, leading to diverse conical folded configurations. The conical Kresling origami is modelled with a truss system, by which the stable states and energy landscapes are derived analytically. We find that the generalization preserves the bistable nature of parallelogram Kresling patterns, while enabling an enlarged design space of geometric parameters for structural and mechanical applications. To demonstrate this, we develop inverse design frameworks to employ conical Kresling origami to approximate arbitrary target surfaces of revolution and achieve prescribed energy landscapes. Various numerical examples obtained from our framework are presented, which agree well with the paper models and the finite-element simulations. We envision that the proposed conical Kresling pattern and inverse design framework can provide a new perspective for applications in deployable structures, shape-morphing devices, multi-modal robots and multistable metamaterials.


2018 ◽  
Vol 29 (14) ◽  
pp. 2933-2945 ◽  
Author(s):  
Sattam Sengupta ◽  
Suyi Li

This study examines a three-dimensional, anisotropic multistability of a mechanical meta material based on a stacked Miura-ori architecture, and investigates how such a unique stability property can impart stiffness and effective modulus programming functions. The unit cell of this metamaterial can be bistable due to the nonlinear relationship between rigid-folding and crease material bending. Such bistability possesses an unorthodox property: the arrangement of elastically stable and unstable equilibria are different along different principal axes of the unit cell, so that along certain axes the unit cell exhibits two force–deformation relationships concurrently within the same range of deformation. Therefore, one can achieve a notable stiffness adaptation via switching between the two stable states. As multiple unit cells are assembled into a metamaterial, the stiffness adaptation can be aggregated into an on-demand modulus programming capability. That is, via strategically switching different unit cells between stable states, one can control the overall effective modulus. This research examines the underlying principles of anisotropic multistability, experimentally validates the feasibility of stiffness adaptation, and conducts parametric analyses to reveal the correlations between the effective modulus programming and Miura-ori designs. The results can advance many adaptive systems such as morphing structures and soft robotics.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3358
Author(s):  
Sadaf Rauf ◽  
Agata Trzesowska-Kruszynska ◽  
Tomasz Sierański ◽  
Marcin Świątkowski

Three new copper coordination compounds derived from 2,2-bis(hydroxymethyl)propionic acid (dmpa) and hexamethylenetetramine (hmta) were obtained and their crystal structures were determined. The stoichiometry of the reagents applied in the syntheses reflects the metal to ligand molar ratio in the formed solid products. Due to the multiple coordination modes of the used ligands, wide structural diversity was achieved among synthesized compounds, i.e., mononuclear [Cu(dmp)2(hmta)2(H2O)] (1), dinuclear [Cu2(dmp)4(hmta)2] (2), and 1D coordination polymer [Cu2(dmp)4(hmta)]n (3). Their supramolecular structures are governed by O—H•••O and O—H•••N hydrogen bonds. The compounds were characterized in terms of absorption (UV-Vis and IR) and thermal properties. The relationships between structural features and properties were discussed in detail. Owing to discrepancies in the coordination mode of a dmp ligand, bidentate chelating in 1, and bidentate bridging in 2 and 3, there is a noticeable change in the position of the bands corresponding to the stretching vibrations of the carboxylate group in the IR spectra. The differences in the structures of the compounds are also reflected in the nature and position of the UV-Vis absorption maxima, which are located at lower wavelengths for 1.


2021 ◽  
Vol 5 (1) ◽  
Author(s):  
Tushar Gupta ◽  
Kenan Elibol ◽  
Stefan Hummel ◽  
Michael Stöger-Pollach ◽  
Clemens Mangler ◽  
...  

AbstractTwo-dimensional (2D) antimony (Sb, “antimonene”) is of interest in electronics and batteries. Sb however exhibits a large allotropic structural diversity, which is also influenced by its support. Thus, Sb heterostructure formation is key in 2D Sb integration. Particularly, 2D Sb/graphene interfaces are important. We thus study here few-layered 2D Sb/graphene heterostructures with atomic resolution (scanning) transmission electron microscopy. We find two Sb morphologies to coexist: first, a 2D morphology of layered β-Sb with β-Sb(001)||graphene(001) texture. Second, one-dimensional Sb nanowires which can be matched to β-Sb[2-21]⊥graphene(001) and are closely related to cubic Sb(001)||graphene(001). Importantly, both Sb morphologies show rotational van-der-Waals epitaxy with graphene. Both are resilient against oxidation, although superficial Sb-oxide formation merits consideration, including epitaxial Sb2O3(111)/β-Sb(001) heterostructures. Exact Sb growth behavior depends on processing and substrate properties including, notably, the support underneath the graphene. Our work elucidates the rich phase and epitaxy landscape in 2D Sb and 2D Sb/graphene heterostructures.


AIP Advances ◽  
2013 ◽  
Vol 3 (2) ◽  
pp. 022105 ◽  
Author(s):  
Il Kyu Lee ◽  
Yoon Jae Kim ◽  
Joo Hwan Oh ◽  
Yoon Young Kim

2021 ◽  
Author(s):  
Richárd Horváth ◽  
Vendel Barth ◽  
Viktor Gonda ◽  
Mihály Réger ◽  
Imre Felde

Abstract In this paper, we study the energy absorption of metamaterials composed of unit cells whose special geometry makes the cross-sectional area and the volume of the bodies generated from them constant (for the same enclosing box dimensions). After a parametric description of such special geometries, we analyzed by finite element analysis the deformation of the metamaterials we have designed during compression. We 3D printed the designed metamaterials from plastic to subject them to real compression. The results of the finite element analysis were compared with the real compaction results. Then, for each test specimen, we plotted its compaction curve. By fitting a polynomial to the compaction curves and integrating it (area under the curve), the energy absorption of the samples can be obtained. As a result of these investigations, we drew a conclusion about the relationship between energy absorption and cell number.


2021 ◽  
Author(s):  
Shengli Mi ◽  
Hongyi Yao ◽  
Xiaoyu Zhao ◽  
Wei Sun

Abstract The exotic properties of mechanical metamaterials are determined by their unit-cells' structure and spatial arrangement, in analogy with the atoms of conventional materials. Companioned with the mechanism of structural or cellular materials1–5, the ancient wisdom of origami6–11 and kirigami12–16 and the involvement of multiphysics interaction2,17,18 enrich the programable mechanical behaviors of metamaterials, including shape-morphing8,12,14,16,19, compliance4,5,8,17,20, texture2,18,21, and topology11,18,22−25. However, typical design strategies are mainly convergent, which transfers various structures into one family of metamaterials that are relatively incompatible with the others and do not fully bring combinatorial principles3,10,26 into play. Here, we report a divergent strategy that designs a clan of mechanical metamaterials with diverse properties derived from a symmetric curve consisting of serpentines and arcs. We derived this composite curve into planar and cubic unit-cells and modularized them by attaching magnetics. Moreover, stacking each of them yields two- and three-dimensional auxetic metamaterials, respectively. Assembling with both modules, we achieved three thick plate-like metamaterials separately with flexibility, in-plane buckling, and foldability. Furthermore, we demonstrated that the hybrid of paradox properties is possible by combining two of the above assembles. We anticipate that this divergent strategy paves the path of building a hierarchical library of diverse combinable mechanical metamaterials and making conventional convergent strategies more efficient to various requests. Main


2019 ◽  
Vol 10 (1) ◽  
Author(s):  
Martin Brandenbourger ◽  
Xander Locsin ◽  
Edan Lerner ◽  
Corentin Coulais

Abstract Non-reciprocal transmission of motion is potentially highly beneficial to a wide range of applications, ranging from wave guiding to shock and vibration damping and energy harvesting. To date, large levels of non-reciprocity have been realized using broken spatial or temporal symmetries, yet mostly in the vicinity of resonances, bandgaps or using nonlinearities, thereby non-reciprocal transmission remains limited to narrow ranges of frequencies or input magnitudes and sensitive to attenuation. Here, we create a robotic mechanical metamaterials wherein we use local control loops to break reciprocity at the level of the interactions between the unit cells. We show theoretically and experimentally that first-of-their-kind spatially asymmetric standing waves at all frequencies and unidirectionally amplified propagating waves emerge. These findings realize the mechanical analogue of the non-Hermitian skin effect. They significantly advance the field of active metamaterials for non hermitian physics and open avenues to channel mechanical energy in unprecedented ways.


Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 635 ◽  
Author(s):  
Christa de Jonge ◽  
Helena Kolken ◽  
Amir Zadpoor

The concept of “mechanical metamaterials” has become increasingly popular, since their macro-scale characteristics can be designed to exhibit unusual combinations of mechanical properties on the micro-scale. The advances in additive manufacturing (AM, three-dimensional printing) techniques have boosted the fabrication of these mechanical metamaterials by facilitating a precise control over their micro-architecture. Although mechanical metamaterials with negative Poisson’s ratios (i.e., auxetic metamaterials) have received much attention before and have been reviewed multiple times, no comparable review exists for architected materials with positive Poisson’s ratios. Therefore, this review will focus on the topology-property relationships of non-auxetic mechanical metamaterials in general and five topological designs in particular. These include the designs based on the diamond, cube, truncated cube, rhombic dodecahedron, and the truncated cuboctahedron unit cells. We reviewed the mechanical properties and fatigue behavior of these architected materials, while considering the effects of other factors such as those of the AM process. In addition, we systematically analyzed the experimental, computational, and analytical data and solutions available in the literature for the titanium alloy Ti-6Al-4V. Compression dominated lattices, such as the (truncated) cube, showed the highest mechanical properties. All of the proposed unit cells showed a normalized fatigue strength below that of solid titanium (i.e., 40% of the yield stress), in the range of 12–36% of their yield stress. The unit cells discussed in this review could potentially be applied in bone-mimicking porous structures.


Author(s):  
DARSHIL SHAH ◽  
JOSHUA MORRIS ◽  
CHRISTOPHER HANSEN ◽  
ALIREZA AMIRKHIZI

Sign in / Sign up

Export Citation Format

Share Document