scholarly journals The future is not always open

2019 ◽  
Vol 110 (1) ◽  
pp. 83-103 ◽  
Author(s):  
James D. E. Grant ◽  
Michael Kunzinger ◽  
Clemens Sämann ◽  
Roland Steinbauer

Abstract We demonstrate the breakdown of several fundamentals of Lorentzian causality theory in low regularity. Most notably, chronological futures (defined naturally using locally Lipschitz curves) may be non-open and may differ from the corresponding sets defined via piecewise $$C^1$$C1-curves. By refining the notion of a causal bubble from Chruściel and Grant (Class Quantum Gravity 29(14):145001, 2012), we characterize spacetimes for which such phenomena can occur, and also relate these to the possibility of deforming causal curves of positive length into timelike curves (push-up). The phenomena described here are, in particular, relevant for recent synthetic approaches to low-regularity Lorentzian geometry where, in the absence of a differentiable structure, causality has to be based on locally Lipschitz curves.

These nine chapters, commissioned on the initiative of the Philosophy section of the British Academy, address fundamental questions about time in philosophy, physics, linguistics, and psychology. Are there facts about the future? Could we affect the past? Physics, general relativity and quantum theory give contradictory treatments of time. So in the search for a theory of quantum gravity, which should give way: general relativity or quantum theory? In linguistics and psychology, how does our language represent time, and how do our minds keep track of it?


2014 ◽  
Vol 23 (09) ◽  
pp. 1430020 ◽  
Author(s):  
R. P. Woodard

I argue that cosmological data from the epoch of primordial inflation is catalyzing the maturation of quantum gravity from speculation into a hard science. I explain why quantum gravitational effects from primordial inflation are observable. I then review what has been done, both theoretically and observationally, and what the future holds. I also discuss what this tells us about quantum gravity.


2002 ◽  
Vol 17 (15n17) ◽  
pp. 1047-1057 ◽  
Author(s):  
DANIEL SUDARSKY

We discuss the conditions under which one can expect to have the usual identification of black hole entropy with the area of the horizon. We then construct an example in which the actual presence of the event horizon on a given hypersurface depends on a quantum event in which a certain quantum variable acquires a value and which occurs in the future of the given hypersurface. This situation indicates that there is something fundamental that is missing in the most popular of the current approaches towards the construction of a theory of quantum gravity, or, alternatively, that there is something fundamental that we do not understand about entropy in general, or at least in its association with black holes.


Symmetry ◽  
2022 ◽  
Vol 14 (1) ◽  
pp. 58
Author(s):  
Houri Ziaeepour

In a previous article we proposed a new model for quantum gravity (QGR) and cosmology, dubbed SU(∞)-QGR. One of the axioms of this model is that Hilbert spaces of the Universe and its subsystems represent the SU(∞) symmetry group. In this framework, the classical spacetime is interpreted as being the parameter space characterizing states of the SU(∞) representing Hilbert spaces. Using quantum uncertainty relations, it is shown that the parameter space—the spacetime—has a 3+1 dimensional Lorentzian geometry. Here, after a review of SU(∞)-QGR, including a demonstration that its classical limit is Einstein gravity, we compare it with several QGR proposals, including: string and M-theories, loop quantum gravity and related models, and QGR proposals inspired by the holographic principle and quantum entanglement. The purpose is to find their common and analogous features, even if they apparently seem to have different roles and interpretations. The hope is that this exercise provides a better understanding of gravity as a universal quantum force and clarifies the physical nature of the spacetime. We identify several common features among the studied models: the importance of 2D structures; the algebraic decomposition to tensor products; the special role of the SU(2) group in their formulation; the necessity of a quantum time as a relational observable. We discuss how these features can be considered as analogous in different models. We also show that they arise in SU(∞)-QGR without fine-tuning, additional assumptions, or restrictions.


1961 ◽  
Vol 13 ◽  
pp. 29-41
Author(s):  
Wm. Markowitz
Keyword(s):  

A symposium on the future of the International Latitude Service (I. L. S.) is to be held in Helsinki in July 1960. My report for the symposium consists of two parts. Part I, denoded (Mk I) was published [1] earlier in 1960 under the title “Latitude and Longitude, and the Secular Motion of the Pole”. Part II is the present paper, denoded (Mk II).


1978 ◽  
Vol 48 ◽  
pp. 387-388
Author(s):  
A. R. Klemola
Keyword(s):  

Second-epoch photographs have now been obtained for nearly 850 of the 1246 fields of the proper motion program with centers at declination -20° and northwards. For the sky at 0° and northward only 130 fields remain to be taken in the next year or two. The 270 southern fields with centers at -5° to -20° remain for the future.


Author(s):  
Godfrey C. Hoskins ◽  
Betty B. Hoskins

Metaphase chromosomes from human and mouse cells in vitro are isolated by micrurgy, fixed, and placed on grids for electron microscopy. Interpretations of electron micrographs by current methods indicate the following structural features.Chromosomal spindle fibrils about 200Å thick form fascicles about 600Å thick, wrapped by dense spiraling fibrils (DSF) less than 100Å thick as they near the kinomere. Such a fascicle joins the future daughter kinomere of each metaphase chromatid with those of adjacent non-homologous chromatids to either side. Thus, four fascicles (SF, 1-4) attach to each metaphase kinomere (K). It is thought that fascicles extend from the kinomere poleward, fray out to let chromosomal fibrils act as traction fibrils against polar fibrils, then regroup to join the adjacent kinomere.


Author(s):  
Nicholas J Severs

In his pioneering demonstration of the potential of freeze-etching in biological systems, Russell Steere assessed the future promise and limitations of the technique with remarkable foresight. Item 2 in his list of inherent difficulties as they then stood stated “The chemical nature of the objects seen in the replica cannot be determined”. This defined a major goal for practitioners of freeze-fracture which, for more than a decade, seemed unattainable. It was not until the introduction of the label-fracture-etch technique in the early 1970s that the mould was broken, and not until the following decade that the full scope of modern freeze-fracture cytochemistry took shape. The culmination of these developments in the 1990s now equips the researcher with a set of effective techniques for routine application in cell and membrane biology.Freeze-fracture cytochemical techniques are all designed to provide information on the chemical nature of structural components revealed by freeze-fracture, but differ in how this is achieved, in precisely what type of information is obtained, and in which types of specimen can be studied.


Sign in / Sign up

Export Citation Format

Share Document