scholarly journals The phosphorylation status of membrane-bound nucleoside diphosphate kinase in epithelia and the role of AMP

2009 ◽  
Vol 329 (1-2) ◽  
pp. 107-114 ◽  
Author(s):  
Kate J. Treharne ◽  
Oliver Giles Best ◽  
Anil Mehta
2021 ◽  
Vol 22 (3) ◽  
pp. 1159
Author(s):  
Leszek A. Kleczkowski ◽  
Abir U. Igamberdiev

Free magnesium (Mg2+) is a signal of the adenylate (ATP+ADP+AMP) status in the cells. It results from the equilibrium of adenylate kinase (AK), which uses Mg-chelated and Mg-free adenylates as substrates in both directions of its reaction. The AK-mediated primary control of intracellular [Mg2+] is finely interwoven with the operation of membrane-bound adenylate- and Mg2+-translocators, which in a given compartment control the supply of free adenylates and Mg2+ for the AK-mediated equilibration. As a result, [Mg2+] itself varies both between and within the compartments, depending on their energetic status and environmental clues. Other key nucleotide-utilizing/producing enzymes (e.g., nucleoside diphosphate kinase) may also be involved in fine-tuning of the intracellular [Mg2+]. Changes in [Mg2+] regulate activities of myriads of Mg-utilizing/requiring enzymes, affecting metabolism under both normal and stress conditions, and impacting photosynthetic performance, respiration, phloem loading and other processes. In compartments controlled by AK equilibrium (cytosol, chloroplasts, mitochondria, nucleus), the intracellular [Mg2+] can be calculated from total adenylate contents, based on the dependence of the apparent equilibrium constant of AK on [Mg2+]. Magnesium signaling, reflecting cellular adenylate status, is likely widespread in all eukaryotic and prokaryotic organisms, due simply to the omnipresent nature of AK and to its involvement in adenylate equilibration.


2015 ◽  
Vol 192 (3) ◽  
pp. 336-341 ◽  
Author(s):  
Plínio Salmazo Vieira ◽  
Priscila Oliveira de Giuseppe ◽  
Arthur Henrique Cavalcante de Oliveira ◽  
Mario Tyago Murakami

2000 ◽  
Vol 182 (12) ◽  
pp. 3475-3481 ◽  
Author(s):  
Jung Hyeob Roh ◽  
Samuel Kaplan

ABSTRACT Previously, we reported that rdxB, encoding a likely membrane-bound two [4Fe-4S]-containing center, is involved in the aerobic regulation of photosystem gene expression in Rhodobacter sphaeroides 2.4.1. To further investigate the role ofrdxB as well as other genes of the rdxBHISoperon on photosystem gene expression, we constructed a series of nonpolar, in-frame deletion mutations in each of the rdxgenes. Using both puc and puf operonlacZ fusions to monitor photosystem gene expression, under aerobic conditions, in each of the mutant strains revealed significant increased photosynthesis gene expression. In the case of mutations in either rdxH, rdxI, or rdxS, the aerobic induction of photosystem gene expression is believed to be indirect by virtue of a posttranscriptional effect oncbb 3 cytochrome oxidase structure and integrity. For RdxB, we suggest that this redox protein has a more direct effect on photosystem gene expression by virtue of its interaction with the cbb 3 oxidase. An associated phenotype, involving the enhanced conversion of the carotenoid spheroidene to spheroidenone, is also observed in the RdxB, -H, -I, and -S mutant strains. This phenotype is also suggested to be the result of the role of the rdxBHIS locus incbb 3 oxidase activity and/or structure. RdxI is suggested to be a new class of metal transporter of the CPx-type ATPases.


2014 ◽  
Vol 222 (1) ◽  
pp. R11-R24 ◽  
Author(s):  
Syed Jalal Khundmiri

Cardiotonic steroids have been used for the past 200 years in the treatment of congestive heart failure. As specific inhibitors of membrane-bound Na+/K+ATPase, they enhance cardiac contractility through increasing myocardial cell calcium concentration in response to the resulting increase in intracellular Na concentration. The half-minimal concentrations of cardiotonic steroids required to inhibit Na+/K+ATPase range from nanomolar to micromolar concentrations. In contrast, the circulating levels of cardiotonic steroids under physiological conditions are in the low picomolar concentration range in healthy subjects, increasing to high picomolar levels under pathophysiological conditions including chronic kidney disease and heart failure. Little is known about the physiological function of low picomolar concentrations of cardiotonic steroids. Recent studies have indicated that physiological concentrations of cardiotonic steroids acutely stimulate the activity of Na+/K+ATPase and activate an intracellular signaling pathway that regulates a variety of intracellular functions including cell growth and hypertrophy. The effects of circulating cardiotonic steroids on renal salt handling and total body sodium homeostasis are unknown. This review will focus on the role of low picomolar concentrations of cardiotonic steroids in renal Na+/K+ATPase activity, cell signaling, and blood pressure regulation.


2014 ◽  
Vol 306 (7) ◽  
pp. F701-F709 ◽  
Author(s):  
Timo Rieg ◽  
Donald E. Kohan

Adenylyl cyclases (AC) catalyze formation of cAMP, a critical component of G protein-coupled receptor signaling. So far, nine distinct membrane-bound AC isoforms (AC1-9) and one soluble AC (sAC) have been identified and, except for AC8, all of them are expressed in the kidney. While the role of ACs in renal cAMP formation is well established, we are just beginning to understand the function of individual AC isoforms, particularly with regard to hormonal regulation of transporter and channel phosphorylation, membrane abundance, and trafficking. This review focuses on the role of different AC isoforms in regulating renal water and electrolyte transport in health as well as potential pathological implications of disordered AC isoform function. In particular, we focus on modulation of transporter and channel abundance, activity, and phosphorylation, with an emphasis on studies employing genetically modified animals. As will be described, it is now evident that specific AC isoforms can exert unique effects in the kidney that may have important implications in our understanding of normal physiology as well as disease pathogenesis.


2006 ◽  
Vol 84 (1) ◽  
pp. 49-59 ◽  
Author(s):  
Aaron Y. Lai ◽  
Kathryn G. Todd

The precise role of microglia in stroke and cerebral ischemia has been the subject of debate for a number of years. Microglia are capable of synthesizing numerous soluble and membrane-bound biomolecules, some known to be neuroprotective, some neurotoxic, whereas others have less definitive bioactivities. The molecular mechanisms through which microglia activate these molecules have thus become an important area of ischemia research. Here we provide a survey review that summarizes the key actions of microglial factors in cerebral ischemia including complement proteins, chemokines, pro-inflammatory cytokines, neurotrophic factors, hormones, and proteinases, as well several important messenger molecules that play a part in how these factors respond to extracellular signals during ischemic injuries. We also provide some new perspectives on how microglial intracellular signaling may contribute to the seemingly contradictory roles of several microglial effector molecules.


1982 ◽  
Vol 60 (4) ◽  
pp. 440-445
Author(s):  
Isao Oota ◽  
Isao Kosaka ◽  
Torao Nagai ◽  
Hideyo Yabu

It is the purpose of this article to point out that the membrane-bound Ca plays an important role in excitation–contraction (E–C) coupling of skeletal muscle fibers and that other divalent cations are unable to substitute for this role of membrane-bound Ca.


2006 ◽  
Vol 188 (21) ◽  
pp. 7668-7676 ◽  
Author(s):  
Tina Hölscher ◽  
Helmut Görisch

ABSTRACT In Gluconobacter oxydans, pyrroloquinoline quinone (PQQ) serves as the cofactor for various membrane-bound dehydrogenases that oxidize sugars and alcohols in the periplasm. Proteins for the biosynthesis of PQQ are encoded by the pqqABCDE gene cluster. Our reverse transcription-PCR and promoter analysis data indicated that the pqqA promoter represents the only promoter within the pqqABCDE cluster of G. oxydans 621H. PQQ overproduction in G. oxydans was achieved by transformation with the plasmid-carried pqqA gene or the complete pqqABCDE cluster. A G. oxydans mutant unable to produce PQQ was obtained by site-directed disruption of the pqqA gene. In contrast to the wild-type strain, the pqqA mutant did not grow with d-mannitol, d-glucose, or glycerol as the sole energy source, showing that in G. oxydans 621H, PQQ is essential for growth with these substrates. Growth of the pqqA mutant, however, was found with d-gluconate as the energy source. The growth behavior of the pqqA mutant correlated with the presence or absence of the respective PQQ-dependent membrane-bound dehydrogenase activities, demonstrating the vital role of these enzymes in G. oxydans metabolism. A different PQQ-deficient mutant was generated by Tn5 transposon mutagenesis. This mutant showed a defect in a gene with high homology to the Escherichia coli tldD gene, which encodes a peptidase. Our results indicate that the tldD gene in G. oxydans 621H is involved in PQQ biosynthesis, possibly with a similar function to that of the pqqF genes found in other PQQ-synthesizing bacteria.


Sign in / Sign up

Export Citation Format

Share Document