Heating Regime and Thermostatic Control of Slabs During Hot Loading

Metallurgist ◽  
2018 ◽  
Vol 62 (7-8) ◽  
pp. 674-680 ◽  
Author(s):  
S. V. Lukin
2007 ◽  
Vol 13 (3) ◽  
pp. 3-11
Author(s):  
V.A. Shuvalov ◽  
◽  
V.G. Tikhii ◽  
L.P. Potapovych ◽  
A.I. Priymak ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3922
Author(s):  
Mariusz Maslak ◽  
Michal Pazdanowski ◽  
Marek Stankiewicz ◽  
Paulina Zajdel

The change in the value of the breaking energy is discussed here for selected steel grades used in building structures after subjecting the samples made of them to episodes of heating in the steady-state heating regime and then cooling in simulated fire conditions. These changes were recorded based on the instrumented Charpy impact tests, in relation to the material initial state. The S355J2+N, 1H18N9T steels and also X2CrNiMoN22-5-3 duplex steel were selected for detailed analysis. The fire conditions were modelled experimentally by heating the samples and then keeping them for a specified time at a constant temperature of: 600 °C (first series) and 800 °C (second series), respectively. Two alternative cooling variants were investigated in the experiment: slow cooling of the samples in the furnace, simulating the natural fire progress, without any external extinguishing action and cooling in water mist simulating an extinguishing action by a fire brigade. The temperature of the tested samples was set at the level of −20 °C and alternatively at the level of +20 °C. The conducted analysis is aimed at assessing the risk of sudden, catastrophic fracture of load-bearing structure made of steel degraded as a result of a fire that occurred previously with different development scenarios.


Energies ◽  
2020 ◽  
Vol 13 (11) ◽  
pp. 2851 ◽  
Author(s):  
Kenneth Leerbeck ◽  
Peder Bacher ◽  
Rune Grønborg Junker ◽  
Anna Tveit ◽  
Olivier Corradi ◽  
...  

An optimized heat pump control for building heating was developed for minimizing CO 2 emissions from related electrical power generation. The control is using weather and CO 2 emission forecasts as inputs to a Model Predictive Control (MPC)—a multivariate control algorithm using a dynamic process model, constraints and a cost function to be minimized. In a simulation study, the control was applied using weather and power grid conditions during a full-year period in 2017–2018 for the power bidding zone DK2 (East, Denmark). Two scenarios were studied; one with a family house and one with an office building. The buildings were dimensioned based on standards and building codes/regulations. The main results are measured as the CO 2 emission savings relative to a classical thermostatic control. Note that this only measures the gain achieved using the MPC control, that is, the energy flexibility, not the absolute savings. The results show that around 16% of savings could have been achieved during the period in well-insulated new buildings with floor heating. Further, a sensitivity analysis was carried out to evaluate the effect of various building properties, for example, level of insulation and thermal capacity. Danish building codes from 1977 and forward were used as benchmarks for insulation levels. It was shown that both insulation and thermal mass influence the achievable flexibility savings, especially for floor heating. Buildings that comply with building codes later than 1979 could provide flexibility emission savings of around 10%, while buildings that comply with earlier codes provided savings in the range of 0–5% depending on the heating system and thermal mass.


2018 ◽  
Vol 8 (10) ◽  
pp. 1986 ◽  
Author(s):  
Jungwon Huh ◽  
Van Mac ◽  
Quang Tran ◽  
Ki-Yeol Lee ◽  
Jong-In Lee ◽  
...  

Detecting subsurface delamination is a difficult and vital task to maintain the durability and serviceability of concrete structure for its whole life cycle. The aim of this work was to obtain better knowledge of the effect of depth, heating time, and rebar on the detectability capacity of delamination. Experimental tests were carried out on a concrete specimen in the laboratory using Long Pulsed Thermography (LPT). Six halogen lamps and a long wavelength infrared camera with a focal plane array of 640 × 480 pixels were used as the heat source and infrared detector, respectively. The study focused on the embedded imitation delaminations with the size of 10 cm × 10 cm × 1 cm, located at depths varying from 1 to 8 cm. The signal-to-noise ratio (SNR) was applied as a criterion to assess the detectability of delamination. The results of this study indicate that as the provided heating time climbed, the SNR increased, and the defect could be identified more clearly. On the other hand, when using the same heating regime, a shallow delamination displayed a higher SNR than a deeper one. The moderate fall of the SNR in the case of imitating defect located below reinforced steel was also observed. The absolute contrast was monitored to determine the observation time, and the nondimensional prefactor k was empirically proposed to predict the depth of delamination. The mean absolute percentage error (MAPE) was used to quantitatively evaluate the difference between forecasted and real depth, which evaluation confirmed the high reliability of the estimated value of the prefactor k.


The existence of the effect of heat metastable localization in the medium in the blow-up heating regime was experimentally proved. This is the regime in which the heating energy for a finite period of time tends to infinity. Previous theoretical studies have shown that in this case some regions, inside of which the temperature increases, may arise, while their size remains constant or decreases with time (heat localization regions). These regions exist as long as there is some energy input from the outside. An installation for the experimental study of the thermal blow-up regimes in a solid was developed. The object of research was an aluminum rod with a heater at its end. The temperature distribution along the rod was measured with thermocouples. The temperature of the rod end could vary according to the given law. Calibration of the installation was performed. The sensitivity of thermocouples was determined. The inertia of the heating and cooling process was estimated. The mathematical description of the thermal processes, occurring during the experiment, was made. The nonlinear equation of heat conduction for the rod was solved, with the heat exchange with the environment by convection and radiation taken into account. The thermal regime at the boundary, which is necessary to create the thermal structures, was determined. The temperature distribution in the rod in the blow-up regime and non-blow-up regime was measured. In the blow-up regime the heat front (the coordinate of the point with the temperature equal to half the maximum temperature) initially shifts from the heat source, and then in the opposite direction, and the size of the area under heating decreases. In the non-blow-up regime the size of the heated region increases all the time. The predicted effect was supposed to be used in installations for thermonuclear fusion where the target was heated by laser radiation pulses of a special shape. This effect can also be used for localized heating in cutting and welding, when the adjacent regions are not to get very hot, and in other similar situations.


Nanoscale ◽  
2020 ◽  
Vol 12 (47) ◽  
pp. 24169-24176
Author(s):  
Ana R. N. Bastos ◽  
Carlos D. S. Brites ◽  
Paola A. Rojas-Gutierrez ◽  
Rute A. S. Ferreira ◽  
Ricardo L. Longo ◽  
...  

An experimental approach and associated model to derive the nanoscale thermal properties of a conformal lipid bilayer supported on an upconverting nanoparticle, and which yields fundamental biophysical properties of the lipid bilayer.


Sign in / Sign up

Export Citation Format

Share Document