scholarly journals Thermal properties of lipid bilayers derived from the transient heating regime of upconverting nanoparticles

Nanoscale ◽  
2020 ◽  
Vol 12 (47) ◽  
pp. 24169-24176
Author(s):  
Ana R. N. Bastos ◽  
Carlos D. S. Brites ◽  
Paola A. Rojas-Gutierrez ◽  
Rute A. S. Ferreira ◽  
Ricardo L. Longo ◽  
...  

An experimental approach and associated model to derive the nanoscale thermal properties of a conformal lipid bilayer supported on an upconverting nanoparticle, and which yields fundamental biophysical properties of the lipid bilayer.

2017 ◽  
Vol 14 (130) ◽  
pp. 20170127 ◽  
Author(s):  
Sina Youssefian ◽  
Nima Rahbar ◽  
Christopher R. Lambert ◽  
Steven Van Dessel

Given their amphiphilic nature and chemical structure, phospholipids exhibit a strong thermotropic and lyotropic phase behaviour in an aqueous environment. Around the phase transition temperature, phospholipids transform from a gel-like state to a fluid crystalline structure. In this transition, many key characteristics of the lipid bilayers such as structure and thermal properties alter. In this study, we employed atomistic simulation techniques to study the structure and underlying mechanisms of heat transfer in dipalmitoylphosphatidylcholine (DPPC) lipid bilayers around the fluid–gel phase transformation. To investigate this phenomenon, we performed non-equilibrium molecular dynamics simulations for a range of different temperature gradients. The results show that the thermal properties of the DPPC bilayer are highly dependent on the temperature gradient. Higher temperature gradients cause an increase in the thermal conductivity of the DPPC lipid bilayer. We also found that the thermal conductivity of DPPC is lowest at the transition temperature whereby one lipid leaflet is in the gel phase and the other is in the liquid crystalline phase. This is essentially related to a growth in thermal resistance between the two leaflets of lipid at the transition temperature. These results provide significant new insights into developing new thermal insulation for engineering applications.


Molecules ◽  
2021 ◽  
Vol 26 (3) ◽  
pp. 710
Author(s):  
Pathomwat Wongrattanakamon ◽  
Wipawadee Yooin ◽  
Busaban Sirithunyalug ◽  
Piyarat Nimmanpipug ◽  
Supat Jiranusornkul

Collagen contains hydroxyproline (Hyp), which is a unique amino acid. Three collagen-derived small peptides (Gly-Pro-Hyp, Pro-Hyp, and Gly-Hyp) interacting across a lipid bilayer (POPC model membrane) for cellular uptakes of these collagen-derived small peptides were studied using accelerated molecular dynamics simulation. The ligands were investigated for their binding modes, hydrogen bonds in each coordinate frame, and mean square displacement (MSD) in the Z direction. The lipid bilayers were evaluated for mass and electron density profiles of the lipid molecules, surface area of the head groups, and root mean square deviation (RMSD). The simulation results show that hydrogen bonding between the small collagen peptides and plasma membrane plays a significant role in their internalization. The translocation of the small collagen peptides across the cell membranes was shown. Pro-Hyp laterally condensed the membrane, resulting in an increase in the bilayer thickness and rigidity. Perception regarding molecular behaviors of collagen-derived peptides within the cell membrane, including their interactions, provides the novel design of specific bioactive collagen peptides for their applications.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Alessandra Luchini ◽  
Samantha Micciulla ◽  
Giacomo Corucci ◽  
Krishna Chaithanya Batchu ◽  
Andreas Santamaria ◽  
...  

AbstractSARS-CoV-2 spike proteins are responsible for the membrane fusion event, which allows the virus to enter the host cell and cause infection. This process starts with the binding of the spike extramembrane domain to the angiotensin-converting enzyme 2 (ACE2), a membrane receptor highly abundant in the lungs. In this study, the extramembrane domain of SARS-CoV-2 Spike (sSpike) was injected on model membranes formed by supported lipid bilayers in presence and absence of the soluble part of receptor ACE2 (sACE2), and the structural features were studied at sub-nanometer level by neutron reflection. In all cases the presence of the protein produced a remarkable degradation of the lipid bilayer. Indeed, both for membranes from synthetic and natural lipids, a significant reduction of the surface coverage was observed. Quartz crystal microbalance measurements showed that lipid extraction starts immediately after sSpike protein injection. All measurements indicate that the presence of proteins induces the removal of membrane lipids, both in the presence and in the absence of ACE2, suggesting that sSpike molecules strongly associate with lipids, and strip them away from the bilayer, via a non-specific interaction. A cooperative effect of sACE2 and sSpike on lipid extraction was also observed.


2013 ◽  
Vol 19 (S4) ◽  
pp. 107-108 ◽  
Author(s):  
A.A. Duarte ◽  
M. Raposo

Liposomes or lipid vesicles are self-closed structures formed by one or several concentric lipid bilayers with an aqueous phase inside, which may incorporate almost any molecule, namely proteins, hormones, enzymes, antibiotics, anticancer agents, antifungical agents, gene transfer agents, DNA, and whole viruses. Scientific evidences prove that unprotected liposomes containing drugs are easily released from the endoplasmic reticulum of the cell. To increase the vesicles lifetime and to activate a controlled drug release with an external stimulus, the vesicles immobilization on a surface and the factors which create conditions to the liposome rupture have to be analyzed. A number of studies have identified some of the critical stages of vesicle adsorption (adhesion), fusion, deformation, rupture, and spreading of the lipid bilayer. Nevertheless, the formation mechanisms of well-controlled continuous supported bilayers or adsorption of whole liposomes are still not fully understood. As yet it was demonstrated that a controlled adsorption of vesicles containing a small fraction of charged lipids occurs without rupture and their subsequent embedding in polyelectrolyte multilayer (PEM) films, meaning vesicles may be immobilized in an intact or slightly deformed state, which can act as drug reservoirs. Moreover, depending on the nature of the physicochemical conditions of the vesicle solution and the substrate surface, a flat lipid bilayer can be formed, known as supported lipid bilayers, which can incorporate membrane proteins and keep the native dynamics of the lipid bilayer mimicking a biological membrane. In this study, a layer of 1,2-dipalmitoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (sodium salt) (DPPG) liposomes adsorbed onto PEMs cushions based on poly(ethylenimine) (PEI), poly(sodium 4-styrenesulfonate) (PSS) and poly(allylamine hydrochloride) (PAH) polyelectrolytes was analyzed by atomic force microscopy (AFM) technique in non-contact mode and quartz crystal microbalance (QCM).Sequential heterostructures of Si/PEI(PSS/PAH)4 and Si/PAH, also designated cushions, were prepared onto silicon substrates using the layer-by-layer (LbL) technique with polyelectrolyte solutions of PEI, PSS and PAH of monomeric concentrations of 0.01M. Topographic images of 1×1μm2 area of Si/PAH/DPPG (Figure 1 a), and Si/PEI(PSS/PAH)4/DPPG (Figure 1 b) LbL films were acquired by AFM. The root mean square roughness (RMS) calculated from topographies data are listed in table I. As shown, when a DPPG layer is adsorbed onto Si/PAH the RMS keeps an approximately equal value meaning that the liposome disrupted and spread onto the surface forming a planar lipid bilayer. But when a DPPG layer is adsorbed onto Si/PEI(PSS/PAH)4 the RMS value doubled, indicating that the structural integrity of the liposomes is maintained, even though there has been any deformation during adsorption. The adsorbed amount of the two PEMs and DPPG-liposomes layers was measured using a QCM and is displayed in table I. The DPPG adsorbed amount obtained on the PAH cushion was approximately equal to a planar lipid bilayer, while the adsorption onto PEI(PSS/PAH)4 was higher than the predicted for a planar lipid bilayer. This behavior suggests that the DPPG liposomes on the second PEM remained intact during adsorption. Both confirm the AFM results. Therefore we conclude that the initial roughness of the surface is a primordial factor to determine the adsorption or not of intact vesicles.The authors acknowledge the “Fundação para a Ciência e Tecnologia” (FCT-MEC) by the post-graduate scholarship SFRH/BD/62229/2009 and the “Plurianual” funding.


2021 ◽  
Vol 119 (1) ◽  
pp. e2109169119
Author(s):  
Kristen A. Gaffney ◽  
Ruiqiong Guo ◽  
Michael D. Bridges ◽  
Shaima Muhammednazaar ◽  
Daoyang Chen ◽  
...  

Defining the denatured state ensemble (DSE) and disordered proteins is essential to understanding folding, chaperone action, degradation, and translocation. As compared with water-soluble proteins, the DSE of membrane proteins is much less characterized. Here, we measure the DSE of the helical membrane protein GlpG of Escherichia coli (E. coli) in native-like lipid bilayers. The DSE was obtained using our steric trapping method, which couples denaturation of doubly biotinylated GlpG to binding of two streptavidin molecules. The helices and loops are probed using limited proteolysis and mass spectrometry, while the dimensions are determined using our paramagnetic biotin derivative and double electron–electron resonance spectroscopy. These data, along with our Upside simulations, identify the DSE as being highly dynamic, involving the topology changes and unfolding of some of the transmembrane (TM) helices. The DSE is expanded relative to the native state but only to 15 to 75% of the fully expanded condition. The degree of expansion depends on the local protein packing and the lipid composition. E. coli’s lipid bilayer promotes the association of TM helices in the DSE and, probably in general, facilitates interhelical interactions. This tendency may be the outcome of a general lipophobic effect of proteins within the cell membranes.


Soft Matter ◽  
2015 ◽  
Vol 11 (5) ◽  
pp. 918-926 ◽  
Author(s):  
Kiyotaka Akabori ◽  
John F. Nagle

High resolution X-ray study provides new insight for the enigmatic ripple phase in lipid bilayers.


Author(s):  
Kai Hashino ◽  
Daiya Mombayashi ◽  
Yuto Nakatani ◽  
Azusa Oshima ◽  
Masumi Yamaguchi ◽  
...  

Abstract Lipid bilayers suspended over microwells on Si substrates are promising platforms for nanobiodevices that mimic cell membranes. Using the biotin-avidin interaction, we have succeeded in selectively arranging vesicles on the freestanding region of a lipid bilayer. When ternary lipid mixtures of saturated lipid, unsaturated lipid, and cholesterol are used, they separate into liquid-order (Lo) and liquid-crystalline (Lα) domains. A freestanding lipid bilayer prefers the Lα-phase over the Lo-phase because of the difference in their flexibility. In addition, the type of biotinylated lipid determines whether it is localized in the Lα-phase domain or the Lo-phase domain. As a result, the biotinylated unsaturated lipids localized in the Lα-phase domain aggregate in the freestanding lipid bilayer, and vesicles labeled with biotin selectively bind to the freestanding lipid bilayer by the biotin-avidin interaction. This technique helps to introduce biomolecules into the freestanding lipid bilayer of nanobiodevices via vesicles.


2019 ◽  
Vol 29 (48) ◽  
pp. 1905474 ◽  
Author(s):  
Ana R. N. Bastos ◽  
Carlos D. S. Brites ◽  
Paola A. Rojas‐Gutierrez ◽  
Christine DeWolf ◽  
Rute A. S. Ferreira ◽  
...  

2006 ◽  
Vol 25 (5) ◽  
pp. 409-418 ◽  
Author(s):  
Akira Takahashi ◽  
Chiyo Yamamoto ◽  
Toshio Kodama ◽  
Kanami Yamashita ◽  
Nagakatsu Harada ◽  
...  

Vibrio parahaemolyticus secretes thermostable direct hemolysin (TDH), a major virulence factor. Earlier studies report that TDH is a pore-forming toxin. However, the characteristics of pores formed by TDH in the lipid bilayer, which is permeable to small ions, remain to be elucidated. Ion channel-like activities were observed in lipid bilayers containing TDH. Three types of conductance were identified. All the channels displayed relatively low ion selectivity, and similar ion permeability. The Cl− channel inhibitors, DIDS, glybenclamide, and NPPB, did not affect the channel activity of pores formed by TDH. R7, a mutant toxin of TDH, also forms pores with channel-like activity in lipid bilayers. The ion permeability of these channels is similar to that of TDH. R7 binds cultured cells and liposomes to a lower extent, compared to TDH. R7 does not display significant hemolytic activity and cell cytotoxicity, possibly owing to the difficulty of insertion into lipid membranes. Once R7 is assembled within lipid membranes, it may assume the same structure as TDH. The authors propose that the single glycine at position 62, substituted with serine in the R7 mutant toxin, plays an important role in TDH insertion into the lipid bilayer.


Sign in / Sign up

Export Citation Format

Share Document