Effect of small interfering RNA transfection on FAK and DLC1 mRNA expression in OVCAR-3

2012 ◽  
Vol 39 (10) ◽  
pp. 9299-9306 ◽  
Author(s):  
HuiRong Shi ◽  
HuiNa Liu ◽  
GuoQiang Zhao
2007 ◽  
Vol 12 (4) ◽  
pp. 546-559 ◽  
Author(s):  
Jason Borawski ◽  
Alicia Lindeman ◽  
Frank Buxton ◽  
Mark Labow ◽  
L. Alex Gaither

High-throughput screening of RNAi libraries has become an essential part of functional analysis in academic and industrial settings. The transition of a cell-based RNAi assay into a 384-well format requires several optimization steps to ensure the phenotype being screened is appropriately measured and that the signal-to-background ratio is above a certain quantifiable threshold. Methods currently used to assess small interfering RNA (siRNA) efficacy after transfection, including quantitative PCR or branch DNA analysis, face several technical limitations preventing the accurate measurement of mRNA levels in a 384-well format. To overcome these difficulties, the authors developed an approach using a viral-based transfection system that measures siRNA efficacy in a standardized 384-well assay. This method allows measurement of siRNA activity in a phenotypically neutral manner by quantifying the knockdown of an exogenous luciferase gene delivered by a lentiviral vector. In this assay, the efficacy of a luciferase siRNA is compared to a negative control siRNA across many distinct assay parameters including cell type, cell number, lipid type, lipid volume, time of the assay, and concentration of siRNA. Once the siRNA transfection is optimized as a 384-well luciferase knockdown, the biologically relevant phenotypic analysis can proceed using the best siRNA transfection conditions. This approach provides a key technology for 384-well assay development when direct measurement of mRNA knockdown is not possible. It also allows for direct comparison of siRNA activity across cell lines from almost any mammalian species. Defining optimal conditions for siRNA delivery into mammalian cells will greatly increase the speed and quality of large-scale siRNA screening campaigns. ( Journal of Biomolecular Screening 2007:546-559)


2008 ◽  
Vol 26 (1) ◽  
pp. 93-101 ◽  
Author(s):  
Izabella ZA Pawluczyk ◽  
Eddie KC Tan ◽  
David Lodwick ◽  
Kevin PG Harris

Heart ◽  
2013 ◽  
Vol 99 (Suppl 3) ◽  
pp. A10.2-A10
Author(s):  
Zhu Jia-bao ◽  
Wu Yu-zhou ◽  
Ma Qian-li ◽  
Li Shu-qin

Endocrinology ◽  
2008 ◽  
Vol 150 (4) ◽  
pp. 1588-1596 ◽  
Author(s):  
Sudipan Karmakar ◽  
Estrella A. Foster ◽  
Carolyn L. Smith

Each of the three members of the p160 steroid receptor coactivator (SRC) family of coactivators (SRC-1, SRC-2 and SRC-3) stimulates estrogen receptor (ER)-α function in trans-activation assays. Consequently, we sought to elucidate their contributions to the ER-regulated processes of cell proliferation, apoptosis, and the expression of ERα target genes in MCF-7 breast cancer cells. The small interfering RNA depletion of SRC-2 or SRC-3 but not SRC-1 inhibited growth of MCF-7 cells, and this was reflected in decreased cell cycle progression and increased apoptosis in SRC-2- or SRC-3-depleted cells as well as a reduction in ERα transcriptional activity measured on a synthetic reporter gene. However, only SRC-3 depletion blocked estradiol stimulated cell proliferation. Depletion of SRC-1 did not affect these events, and together this reveals functional differences between each of the three SRC family coactivators. Regulation of the endogenous ERα target gene, c-myc was not affected by depletion of any of the p160 coactivators although depletion of each of them decreased pS2 mRNA expression in estradiol-treated MCF-7 cells. Moreover, progesterone receptor and cyclin D1 gene expression were decreased in SRC-3 small interfering RNA-treated cells. Expression of mRNA and protein levels for the antiapoptotic gene, Bcl-2 was dependent on SRC-3 expression, whereas Bcl-2 protein but not mRNA expression also was sensitive to SRC-1 depletion. Together these data indicate that the closely related p160 coactivators are not functionally redundant in breast cancer cells because they play gene-specific roles in regulating mRNA and protein expression, and they therefore are likely to make unique contributions to breast tumorigenesis.


Author(s):  
F. C. Pérez-Martínez ◽  
A.V. Ocaña ◽  
G.M. Pavan ◽  
A. Danani ◽  
V. Ceña

2020 ◽  
Vol 20 (1) ◽  
Author(s):  
Yan Yang ◽  
Lili Ding ◽  
Qi Zhou ◽  
Li Fen ◽  
Yuhua Cao ◽  
...  

Abstract Background Aurora kinase A (AURKA) has been implicated in the regulation of cell cycle progression, mitosis and a key number of oncogenic signaling pathways in various malignancies including neuroblastoma. Small molecule inhibitors of AURKA have shown potential, but still not as good as expected effects in clinical trials. Little is known about this underlying mechanism. Here, we evaluated the inhibitory effects of AURKA inhibitor MLN8237 on neuroblastoma cells to understand the potential mechanisms responsible for tumor therapy. Methods MLN8237 treatment on neuroblastoma cell line IMR32 was done and in vivo inhibitory effects were investigated using tumor xenograft model. Cellular senescence was evaluated by senescence-associated β-gal Staining assay. Flow cytometry was used to tested cell cycle arrest and cell apoptosis. Senescence-associated signal pathways were detected by western blot. CD133 microbeads and microsphere formation were used to separate and enrich CD133+ cells. AURKA small interfering RNA transfection was carried to downregulate AURKA level. Finally, the combination of MLN8237 treatment with AURKA small interfering RNA transfection were adopted to evaluate the inhibitory effect on neuroblastoma cells. Results We demonstrate that MLN8237, an inhibitor of AURKA, induces the neuroblastoma cell line IMR32 into cellular senescence and G2/M cell phase arrest. Inactivation of AURKA results in MYCN destabilization and inhibits cell growth in vitro and in a mouse model. Although MLN8237 inhibits AURKA kinase activity, it has almost no inhibitory effect on the AURKA protein level. By contrast, MLN8237 treatment leads to abnormal high expression of AURKA in vitro and in vivo. Knockdown of AURKA reduces cell survival. The combination of MLN8237 with AURKA small interfering RNA results in more profound inhibitory effects on neuroblastoma cell growth. Moreover, MLN8237 treatment followed by AURKA siRNA forces senescent cells into apoptosis via suppression of the Akt/Stat3 pathway. Conclusions The effect of AURKA-targeted inhibition of tumor growth plays roles in both the inactivation of AURKA activity and the decrease in the AURKA protein expression level.


Endocrinology ◽  
2011 ◽  
Vol 152 (8) ◽  
pp. 3182-3191 ◽  
Author(s):  
B. P. Kenealy ◽  
K. L. Keen ◽  
O. K. Rønnekleiv ◽  
E. Terasawa

Previously, we reported that 1 nm 17ß-estradiol (E2) induces a rapid action, which is, in part, mediated through the G protein-coupled receptor GPR30 in primate GnRH neurons. Because it has been reported that the diphenylacrylamide compound, STX, causes estrogenic action in the mouse and guinea pig hypothalamus, the present study examined effects of STX in primate GnRH neurons and whether there is an action independent of GPR30. Results are summarized as follows. STX (10 nm) exposure increased 1) the oscillation frequency of intracellular calcium concentration ([Ca2+]i), 2) the percentage of cells stimulated, and 3) the synchronization frequency of [Ca2+]i oscillations. STX (10–100 nm) also stimulated GnRH release. The effects of STX on both [Ca2+]i oscillations and GnRH release were similar to those caused by E2 (1 nm), although with less magnitude. STX (10 nm)-induced changes in [Ca2+]i oscillations were not altered by GPR30 small interfering RNA transfection, indicating that STX-sensitive receptors differ from GPR30. Finally, a higher dose of E2 (10 nm) induced a larger change in [Ca2+]i oscillations than that with a smaller dose of E2 (1 nm), and the effects of 10 nm E2 were reduced but not completely blocked by GPR30 small interfering RNA transfection, indicating that the effects of 10 nm E2 in primate GnRH neurons are mediated by multiple membrane receptors, including GPR30 and STX-sensitive receptors. Collectively, the rapid action of E2 mediated through GPR30 differs from that mediated through STX-sensitive receptors. The molecular structure of the STX-sensitive receptor remains to be identified.


2012 ◽  
Vol 102 (3) ◽  
pp. 638a
Author(s):  
Van A. Ngo ◽  
Amit Choubey ◽  
Rajiv Kalia ◽  
Aiichiro Nakano ◽  
Priya Vashishta

2014 ◽  
Vol 99 (11) ◽  
pp. E2162-E2168 ◽  
Author(s):  
K. L. Roemer ◽  
S. L. Young ◽  
R. F. Savaris

Context: In a previous microarray analysis, GRB2-associated binding protein 1 (GAB1), a docking protein closely related to the insulin receptor substrate, was down-regulated in endometrium of women with polycystic ovary syndrome (PCOS). Objective: The objective of the study was to characterize the cyclic expression of endometrial GAB1 in vivo in normal women and those with PCOS as well as investigate the possible mechanisms of endometrial regulation of GAB1 expression and action in vitro. Design: This was an experimental and case-control study. Setting: The study was conducted at a tertiary university hospital. Patients: Normal proven fertile women (controls; n = 31) and women with PCOS (cases; n = 26) participated in the study. Interventions: Interventions included timed endometrial biopsies at different phases of the menstrual cycle. Ishikawa cells were cultured with β-estradiol (E2), medroxyprogesterone acetate, and E2 + medroxyprogesterone acetate. Transfection of small interfering RNA for GAB1 in Ishikawa cells incubated with or without insulin. Main Outcome Measures: GAB1 mRNA expression in Ishikawa cells and in endometrium of cases and controls was measured. Protein expression of phosphorylated MAPK by Western blot was also measured. Immunohistochemical localization and expression of phosphorylated GAB1 in endometrium was also measured, using a digital histological score. Results: In endometrial tissue, GAB1 mRNA was reduced in the proliferative phase of PCOS women, compared with controls (P = .003; ANOVA). When all the phases of the menstrual cycle were grouped, GAB1 protein expression was reduced in endometrium of PCOS women (P < .0001; Student t test). E2 increases GAB1 mRNA expression in Ishikawa cells (P = .001; ANOVA). Phosphorylated MAPK is reduced in cells transfected with small interfering RNA for GAB1 (P = .008; ANOVA) and incubated with insulin. Conclusions: GAB1 mRNA expression is positively modulated by E2. Endometrial GAB1 protein and mRNA expression are reduced in women with PCOS, suggesting that the endometrium of PCOS women have a defect in insulin signaling due to GAB1 down-regulation.


Sign in / Sign up

Export Citation Format

Share Document