scholarly journals Plasma-based processes for planar and 3D surface patterning of functional nanoparticles

2019 ◽  
Vol 21 (11) ◽  
Author(s):  
S. Askari ◽  
H. Machhadani ◽  
J. Benedikt ◽  
U. Helmersson

Abstract We present a gas-phase process for surface patterning and 3D self-assembly of nanoparticles (NPs) of functional materials such as metals, oxides, and nitrides. The method relies on electrostatic assembly of free-flying NPs with unipolar charge produced in plasma sources. We demonstrate the capability of the process in self-assembly of NPs, with the size in the range 10–60 nm, into arrays of free-standing 3D microstructures with complex morphologies. Considering that the plasma nanoparticle sources are compatible with synthesis of a large library of material NPs, the process introduces a novel approach for 3D printing of various functional NPs, high-precision device integration of NPs on sub-micrometer scales, and large-area parallel surface patterning of NPs.

2005 ◽  
Vol 901 ◽  
Author(s):  
Nataliya A Yufa ◽  
Amadou L Cisse ◽  
Seth B Darling ◽  
Sam D Bader ◽  
Philippe Guyot-Sionnest ◽  
...  

AbstractCombining inorganic and organic components to create functional materials has been an active area of research in recent years. Inorganic components possess useful electric, photonic, or magnetic properties while organic components can self-assemble into a variety of morphologies on the nanoscale. We describe a novel approach for arraying nanoparticles using a modified diblock copolymer scaffold. Thin (30 nm) films of poly(styrene-block-methylmethacrylate) (PS-b-PMMA) copolymer were used as a substrate. Upon annealing, PS-b-PMMA forms lying-down cylinders of PMMA in a matrix of PS. These thin films were modified by exposure to ultraviolet light in vacuum which photochemically thinned the PMMA, creating a more highly corrugated surface. We find that colloidal superparamagnetic FePt nanodots and semiconducting CdSe nanodots deposited on this surface show a strong preference for the photochemically modified phase. This hierarchical self-assembly method may prove useful for many nanomaterials-based applications.


2018 ◽  
Vol 25 (25) ◽  
pp. 2987-3000 ◽  
Author(s):  
Linying Liu ◽  
Xiaoshuang Li ◽  
Lei Chen ◽  
Xin Zhang

Nanomedicine is widely developed in recent years. In nanomedicine system, nanoscale and nanostructured functional materials are used to manipulate the human biology systems at the molecular level for cancer imaging and therapy. New nanostructure based functional materials consist of nanoscale liposomes, spheres, micelles, capsules, emulsion, suspension and phamacosomes. Several functional nanoparticles such as lipidbased and polymer-based materials are demonstrated to be drug delivery vehicles and imaging agents. These materials are biodegradable, biocompatible and have better biodistribution, lower side effect and lower toxicity. In addition, hybrids with these materials coating provide uniquely electrical, optical and magnetic properties. This review discusses the research on the applications of functional materials, especially nanoparticles as imaging contrast agents, cancer therapeutic agents and multi-functional agents and this review focused on the theranostic integration treatments on liver cancer and brain cancer.


2017 ◽  
Vol 70 (2) ◽  
pp. 126 ◽  
Author(s):  
Mark P. Del Borgo ◽  
Ketav Kulkarni ◽  
Marie-Isabel Aguilar

The unique structures formed by β-amino acid oligomers, or β-peptide foldamers, have been studied for almost two decades, which has led to the discovery of several distinctive structures and bioactive molecules. Recently, this area of research has expanded from conventional peptide drug design to the formation of assemblies and nanomaterials by peptide self-assembly. The unique structures formed by β-peptides give rise to a set of new materials with altered properties that differ from conventional peptide-based materials; such new materials may be useful in several bio- and nanomaterial applications.


Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3376
Author(s):  
Marco Scarel ◽  
Silvia Marchesan

Cyclodipeptides (CDPs) or 2,5-diketopiperazines (DKPs) can exert a variety of biological activities and display pronounced resistance against enzymatic hydrolysis as well as a propensity towards self-assembly into gels, relative to the linear-dipeptide counterparts. They have attracted great interest in a variety of fields spanning from functional materials to drug discovery. This concise review will analyze the latest advancements in their synthesis, self-assembly into gels, and their more innovative applications.


Biomedicines ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 294
Author(s):  
Raffaele Pugliese ◽  
Anna Arnoldi ◽  
Carmen Lammi

Naturally occurring food peptides are frequently used in the life sciences due to their beneficial effects through their impact on specific biochemical pathways. Furthermore, they are often leveraged for applications in areas as diverse as bioengineering, medicine, agriculture, and even fashion. However, progress toward understanding their self-assembling properties as functional materials are often hindered by their long aromatic and charged residue-enriched sequences encrypted in the parent protein sequence. In this study, we elucidate the nanostructure and the hierarchical self-assembly propensity of a lupin-derived peptide which belongs to the α-conglutin (11S globulin, legumin-like protein), with a straightforward N-terminal biotinylated oligoglycine tag-based methodology for controlling the nanostructures, biomechanics, and biological features. Extensive characterization was performed via Circular Dichroism (CD) spectroscopy, Fourier Transform Infrared spectroscopy (FT-IR), rheological measurements, and Atomic Force Microscopy (AFM) analyses. By using the biotin tag, we obtained a thixotropic lupin-derived peptide hydrogel (named BT13) with tunable mechanical properties (from 2 to 11 kPa), without impairing its spontaneous formation of β-sheet secondary structures. Lastly, we demonstrated that this hydrogel has antioxidant activity. Altogether, our findings address multiple challenges associated with the development of naturally occurring food peptide-based hydrogels, offering a new tool to both fine tune the mechanical properties and tailor the antioxidant activities, providing new research directions across food chemistry, biochemistry, and bioengineering.


Nanoscale ◽  
2021 ◽  
Vol 13 (8) ◽  
pp. 4519-4529
Author(s):  
J. Mohapatra ◽  
J. Elkins ◽  
M. Xing ◽  
D. Guragain ◽  
Sanjay R. Mishra ◽  
...  

Self-assembly of nanoparticles into ordered patterns is a novel approach to build up new consolidated materials with desired collective physical properties.


2015 ◽  
Vol 127 (15) ◽  
pp. 4654-4659 ◽  
Author(s):  
Junghee Lee ◽  
Ghibom Bhak ◽  
Ji-Hye Lee ◽  
Woohyun Park ◽  
Minwoo Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document