The equivalent angle-of-attack method for estimating the nonlinear aerodynamic characteristics of missile wings and control surfaces

1982 ◽  
Author(s):  
M. HEMSCH ◽  
J. NIELSEN
2013 ◽  
Author(s):  
Dennis Evangelista ◽  
Griselda Cardona ◽  
Eric Guenther-Gleason ◽  
Tony Huynh ◽  
Austin Kwong ◽  
...  

We report the effects of posture and morphology on the static aerodynamic stability and control effectiveness of physical models based on the feathered dinosaur,Microraptor gui, from the Cretaceous of China. Postures had similar lift and drag coefficients and were broadly similar when simplified metrics of gliding were considered, but they exhibited different stability characteristics depending on the position of the legs and the presence of feathers on the legs and the tail. Both stability and the function of appendages in generating maneuvering forces and torques changed as the glide angle or angle of attack were changed. These are significant because they represent an aerial environment that may have shifted during the evolution of directed aerial descent and other aerial behaviors. Certain movements were particularly effective (symmetric movements of the wings and tail in pitch, asymmetric wing movements, some tail movements). Other appendages altered their function from creating yaws at high angle of attack to rolls at low angle of attack, or reversed their function entirely. WhileM. guilived afterArchaeopteryxand likely represents a side experiment with feathered morphology, the general patterns of stability and control effectiveness suggested from the manipulations of forelimb, hindlimb and tail morphology here may help understand the evolution of flight control aerodynamics in vertebrates. Though these results rest on a single specimen, as further fossils with different morphologies tested, the findings here could be applied in a phylogenetic context to reveal biomechanical constraints on extinct flyers arising from the need to maneuver. Now published in PLOS ONE http://dx.plos.org/10.1371/journal.pone.0085203


Author(s):  
М.К. Тлеулинов

Oscillations of a catastrophic change in shape (oscillations of clicking) compound lifting and control surfaces interconnected in a statically indefinable manner are considered. The influence of the angle of attack on the nature of oscillations is investigated. The phase portraits of the twisting angle of the control surface at different angles of attack are given.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Mi Baigang ◽  
Yu Jingyi

The classical aerodynamic derivative model is widely used in flight dynamics, but its application is extremely limited in cases with complicated nonlinear flows, especially at high angles of attack. A modified nonlinear aerodynamic derivative model for predicting unsteady aerodynamic forces and moments at a high angle of attack is developed in this study. We first extend the higher-order terms to describe the nonlinear characteristics and then introduce three more influence parameters, the initial angle of attack, the reduced frequency, and the oscillation amplitude, to correct the constant aerodynamic derivative terms that have higher-order polynomials for these values. The improved nonlinear aerodynamic derivative model was validated by using the NACA 0015 airfoil and the F-18 model. The results show that the improved model has a higher prediction ability at high angles of attack and has the ability to predict the aerodynamic characteristics of other unknown states based on known unsteady aerodynamic data, such as the initial angle of attack, reduced frequency, and oscillation amplitude.


2018 ◽  
Vol 59 (1) ◽  
pp. 48-60 ◽  
Author(s):  
P S Segre ◽  
D E Cade ◽  
J Calambokidis ◽  
F E Fish ◽  
A S Friedlaender ◽  
...  

Abstract Blue whales are often characterized as highly stable, open-ocean swimmers who sacrifice maneuverability for long-distance cruising performance. However, recent studies have revealed that blue whales actually exhibit surprisingly complex underwater behaviors, yet little is known about the performance and control of these maneuvers. Here, we use multi-sensor biologgers equipped with cameras to quantify the locomotor dynamics and the movement of the control surfaces used by foraging blue whales. Our results revealed that simple maneuvers (rolls, turns, and pitch changes) are performed using distinct combinations of control and power provided by the flippers, the flukes, and bending of the body, while complex trajectories are structured by combining sequences of simple maneuvers. Furthermore, blue whales improve their turning performance by using complex banked turns to take advantage of their substantial dorso-ventral flexibility. These results illustrate the important role body flexibility plays in enhancing control and performance of maneuvers, even in the largest of animals. The use of the body to supplement the performance of the hydrodynamically active surfaces may represent a new mechanism in the control of aquatic locomotion.


Author(s):  
Michael Krieg ◽  
Kamran Mohseni

Squid and jellyfish generate propulsive forces by successively taking in and expelling high momentum jets of water. This method of propulsion offers several advantages to underwater vehicles/robots. The driving mechanism can be placed internal to the vehicle, reducing the drag associated with an abundance of external thrusters and control surfaces. The thrusters can generate accurate predictable forcing in the low thrust range, while still generating thrust nearly instantaneously over the entire force range. Vortex ring formation dynamics play an important role in creating thrust. It is observed that squid and jellyfish eject fluid jets which are not exactly parallel, and have a contracting velocity in the radial direction. A prototype thruster was developed which generates both parallel and converging propulsive jets. The total impulse of the jet is determined from DPIV techniques to determine the effect a non-zero radial velocity had on thrust production. The radial velocity was observed to increase the total impulse of the jet by 70% for low stroke ratio jets, and 75% for large stroke ratio jets.


10.14311/530 ◽  
2004 ◽  
Vol 44 (2) ◽  
Author(s):  
A. V. Petrov ◽  
Y. G. Stepanov ◽  
M. V. Shmakov

This report presents the results of experimental investigations into the interaction between the propellers (Ps) and the airframe of a twin-engine, twin-boom light transport aircraft with a Π-shaped tail. An analysis was performed of the forces and moments acting on the aircraft with rotating Ps. The main features of the methodology for windtunnel testing of an aircraft model with running Ps in TsAGI’s T-102 wind tunnel are outlined.The effect of 6-blade Ps slipstreams on the longitudinal and lateral aerodynamic characteristics as well as the effectiveness of the control surfaces was studied on the aircraft model in cruise and takeoff/landing configurations. The tests were conducted at flow velocities of V∞ = 20 to 50 m/s in the ranges of angles of attack α =  -6 to 20 deg, sideslip angles of β = -16 to 16 deg and blade loading coefficient of B 0 to 2.8. For the aircraft of unusual layout studied, an increase in blowing intensity is shown to result in decreasing longitudinal static stability and significant asymmetry of the directional stability characteristics associated with the interaction between the Ps slipstreams of the same (left-hand) rotation and the empennage.


2021 ◽  
Author(s):  
Nasser Shelil

Abstract. The aerodynamic characteristics of DTU-LN221 airfoil is studied. ANSYS Fluent is used to simulate the airfoil performance with seven different turbulence models. The simulation results for the airfoil with different turbulence models are compared with the wind tunnel experimental data performed under the same operating conditions. It is found that there is a good agreement between the computational fluid dynamics (CFD) predicted aerodynamic force coefficients with wind tunnel experimental data especially with angle of attack between −5° to 10°. RSM is chosen to investigate the flow field structure and the surface pressure coefficients under different angle of attack between −5° to 10°. Also the effect of changing air temperature, velocity and turbulence intensity on lift and drag coefficients/forces are examined. The results show that it is recommended to operate the wind turbines airfoil at low air temperature and high velocity to enhance the performance of the wind turbines.


2021 ◽  
Vol 2103 (1) ◽  
pp. 012206
Author(s):  
V I Chernousov ◽  
A A Krutov ◽  
E A Pigusov

Abstract This paper presents the experiment results of modelling the one engine failure at the landing mode on a model of a light transport airplane in the T-102 TsAGI low speed wind tunnel. The effect of starboard and port engines failure on the aerodynamic characteristics and stability of the model is researched. The model maximum lift coefficient is reduced about ≈8% and there are the same moments in roll and yaw for starboard and port engines failure case. It was found that the failure of any engine has little impact on the efficiency of control surfaces. Approaches of compensation of forces and moments arising in the engine failure case were investigated.


Sign in / Sign up

Export Citation Format

Share Document