NtCycB2 negatively regulates tobacco glandular trichome formation, exudate accumulation, and aphid resistance

Author(s):  
Zhaojun Wang ◽  
Xiaoxiao Yan ◽  
Hongying Zhang ◽  
Ying Meng ◽  
Yang Pan ◽  
...  
Plants ◽  
2021 ◽  
Vol 10 (7) ◽  
pp. 1420
Author(s):  
Takahiro Ueda ◽  
Miki Murata ◽  
Ken Yokawa

Environmental light conditions influence the biosynthesis of monoterpenes in the mint plant. Cyclic terpenes, such as menthol, menthone, pulegone, and menthofuran, are major odor components synthesized in mint leaves. However, it is unclear how light for cultivation affects the contents of these compounds. Artificial lighting using light-emitting diodes (LEDs) for plant cultivation has the advantage of preferential wavelength control. Here, we monitored monoterpene contents in hydroponically cultivated Japanese mint leaves under blue, red, or far-red wavelengths of LED light supplements. Volatile cyclic monoterpenes, pulegone, menthone, menthol, and menthofuran were quantified using the head-space solid phase microextraction method. As a result, all light wavelengths promoted the biosynthesis of the compounds. Remarkably, two weeks of blue-light supplement increased all compounds: pulegone (362% increase compared to the control), menthofuran (285%), menthone (223%), and menthol (389%). Red light slightly promoted pulegone (256%), menthofuran (178%), and menthol (197%). Interestingly, the accumulation of menthone (229%) or menthofuran (339%) was observed with far-red light treatment. The quantification of glandular trichomes density revealed that no increase under light supplement was confirmed. Blue light treatment even suppressed the glandular trichome formation. No promotion of photosynthesis was observed by pulse-amplitude-modulation (PAM) fluorometry. The present result indicates that light supplements directly promoted the biosynthetic pathways of cyclic monoterpenes.


2016 ◽  
Vol 7 (1) ◽  
Author(s):  
Dan Ma ◽  
Yan Hu ◽  
Changqing Yang ◽  
Bingliang Liu ◽  
Lei Fang ◽  
...  

Author(s):  
Fangyan Zheng ◽  
Long Cui ◽  
Changxing Li ◽  
Qingmin Xie ◽  
Guo Ai ◽  
...  

Abstract Trichomes are specialized glandular or non-glandular structures that provide physical or chemical protection against insect and pathogens attack. Trichomes in Arabidopsis, as typical non-glandular structures, have been extensively studied. However, the molecular mechanism underlying glandular trichome formation and elongation still remains largely unknown. We previously demonstrated that Hair (H) is essential for the formation of type I and type VI trichomes. Here, we found that overexpression of H increased the density and length of tomato trichomes. We revealed that H physically interacts with its close homolog SlZFP8-like (SlZFP8L) and SlZFP8L also directly interacts with Woolly (Wo) by biochemical assays. SlZFP8L overexpression plants showed increased trichome density and length. We further found that the expression of SlZFP6, encoding a C2H2 zinc finger protein, is positively regulated by H. We identified that SlZFP6, is a direct target of H through ChIP-qPCR, Y1H, and LUC assays. Similar to H and SlZFP8L, the overexpression of SlZFP6 also increased the density and length of tomato trichomes. Taken together, our results suggest that H interacts with SlZFP8-like to regulate the initiation and elongation of trichomes by modulating SlZFP6 expression in tomato.


Planta Medica ◽  
1992 ◽  
Vol 58 (02) ◽  
pp. 188-191 ◽  
Author(s):  
Atsushi Nishizawa ◽  
Gisho Honda ◽  
Yoko Kobayashi ◽  
Mamoru Tabata

2021 ◽  
Vol 12 ◽  
Author(s):  
Jinqiu Liu ◽  
Haoran Wang ◽  
Mengmeng Liu ◽  
Jinkui Liu ◽  
Sujun Liu ◽  
...  

Trichomes are unicellular or multicellular epidermal structures that play a defensive role against environmental stresses. Although unicellular trichomes have been extensively studied as a mechanistic model, the genes involved in multicellular trichome formation are not well understood. In this study, we first classified the trichome morphology structures in Capsicum species using 280 diverse peppers. We cloned a key gene (Hairiness) on chromosome 10, which mainly controlled the formation of multicellular non-glandular trichomes (types II, III, and V). Hairiness encodes a Cys2-His2 zinc-finger protein, and virus-induced gene silencing of the gene resulted in a hairless phenotype. Differential expression of Hairiness between the hairiness and hairless lines was due to variations in promoter sequences. Transgenic experiments verified the hypothesis that the promoter of Hairiness in the hairless line had extremely low activity causing a hairless phenotype. Hair controlled the formation of type I glandular trichomes in tomatoes, which was due to nucleotide differences. Taken together, our findings suggest that the regulation of multicellular trichome formation might have similar pathways, but the gene could perform slightly different functions in crops.


2018 ◽  
Vol 30 (12) ◽  
pp. 2988-3005 ◽  
Author(s):  
Jiesen Xu ◽  
Zeger O. van Herwijnen ◽  
Dörthe B. Dräger ◽  
Chun Sui ◽  
Michel A. Haring ◽  
...  

Euphytica ◽  
2021 ◽  
Vol 217 (3) ◽  
Author(s):  
Joris Santegoets ◽  
Marcella Bovio ◽  
Wendy van’t Westende ◽  
Roeland E. Voorrips ◽  
Ben Vosman

AbstractThe greenhouse whitefly Trialeurodes vaporariorum is a major threat in tomato cultivation. In greenhouse grown tomatoes non-trichome based whitefly resistance may be better suited than glandular trichome based resistance as glandular trichomes may interfere with biocontrol, which is widely used. Analysis of a collection of recombinant inbred lines derived from a cross between Solanum lycopersicum and Solanum galapagense showed resistance to the whitefly T. vaporariorum on plants without glandular trichomes type IV. The resistance affected whitefly adult survival (AS), but not oviposition rate. This indicates that S. galapagense, in addition to trichome based resistance, also carries non-trichome based resistance components. The effectiveness of the non-trichome based resistance appeared to depend on the season in which the plants were grown. The resistance also had a small but significant effect on the whitefly Bemisia tabaci, but not on the thrips Frankliniella occidentalis. A segregating F2 population was created to map the non-trichome based resistance. Two Quantitative trait loci (QTLs) for reduced AS of T. vaporariorum were mapped on chromosomes 12 and 7 (explaining 13.9% and 6.0% of the variance respectively). The QTL on chromosome 12 was validated in F3 lines.


Sign in / Sign up

Export Citation Format

Share Document