Effects of stand age, wildfire and clearcut harvesting on forest floor in boreal mixedwood forests

2010 ◽  
Vol 336 (1-2) ◽  
pp. 267-277 ◽  
Author(s):  
Bharat M. Shrestha ◽  
Han Y. H. Chen
Forests ◽  
2021 ◽  
Vol 12 (11) ◽  
pp. 1562
Author(s):  
Iveta Varnagirytė-Kabašinskienė ◽  
Povilas Žemaitis ◽  
Kęstutis Armolaitis ◽  
Vidas Stakėnas ◽  
Gintautas Urbaitis

In the context of the specificity of soil organic carbon (SOC) storage in afforested land, nutrient-poor Arenosols and nutrient-rich Luvisols after afforestation with coniferous and deciduous tree species were studied in comparison to the same soils of croplands and grasslands. This study analysed the changes in SOC stock up to 30 years after afforestation of agricultural land in Lithuania, representing the cool temperate moist climate region of Europe. The SOC stocks were evaluated by applying the paired-site design. The mean mass and SOC stocks of the forest floor in afforested Arenosols increased more than in Luvisols. Almost twice as much forest floor mass was observed in coniferous than in deciduous stands 2–3 decades after afforestation. The mean bulk density of fine (<2 mm) soil in the 0–30 cm mineral topsoil layer of croplands was higher than in afforested sites and grasslands. The clear decreasing trend in mean bulk density due to forest stand age with the lowest values in the 21–30-year-old stands was found in afforested Luvisols. In contrast, the SOC concentrations in the 0–30 cm mineral topsoil layer, especially in Luvisols afforested with coniferous species, showed an increasing trend due to the influence of stand age. The mean SOC values in the 0–30 cm mineral topsoil layer of Arenosols and Luvisols during the 30 years after afforestation did not significantly differ from the adjacent croplands or grasslands. The mean SOC stock slightly increased with the forest stand age in Luvisols; however, the highest mean SOC stock was detected in the grasslands. In the Arenosols, there was higher SOC accumulation in the forest floor with increasing stand age than in the Luvisols, while the proportion of SOC stocks in mineral topsoil layers was similar and more comparable to grasslands. These findings suggest encouragement of afforestation of former agricultural land under the current climate and soil characteristics in the region, but the conversion of perennial grasslands to forest land should be done with caution.


1986 ◽  
Vol 16 (2) ◽  
pp. 293-302 ◽  
Author(s):  
E. S. Wallace ◽  
B. Freedman

A postclear-cutting chronosequence of hardwood stands in Nova Scotia was examined for patterns of forest floor weight, concentration of selected nutrients, rate of potential insitu litter decomposition (litterbags), and potential lab ammonification and nitrification. Some evidence was found that the forest floor experiences weight loss following clear-cutting. However, the large weight losses and clear pattern of recovery described by others for New Hampshire hardwood chronosequences were not observed. The lack of close agreement may have been a result of intra- and inter-stand variation in forest floor weight in our study. This spatial variation was greater than any effect as a result of clear-cutting. There was no significant relationship between insitu weight loss of leaves or twigs with stand age. No clear-cutting effect was observed in the laboratory for potential ammonification, which occurred readily in all stands (three clear-cuttings, three mature stands). Limed materials produced significantly more mineralized N (nitrate N + ammonium N) than did unlimed materials. Concentrations of ammonium N in F and H horizon field material were significantly higher on clear-cuttings than in mature stands. However, since this measurement reflects net rather than total production, it is not evidence that higher rates of ammonification occurred on clear-cuttings. Potential nitrification was not an important process in F and H horizon materials at their natural pH. Nitrification occurred readily in limed materials, but there were no significant differences among different aged stands. Concentrations of nitrate N in field F and H horizon material were low for all stands, with a mean of 9 ± 7 ppm (n = 350). However, in 7% of field samples, nitrate N ≥ 15 ppm was found; in 2%, ≥30 ppm was found.


1992 ◽  
Vol 22 (4) ◽  
pp. 457-464 ◽  
Author(s):  
M.J. Mitchell ◽  
N.W. Foster ◽  
J.P. Shepard ◽  
I.K. Morrison

Biogeochemical cycling of S and N was quantified at two hardwood sites (Turkey Lakes watershed (TLW) and Huntington Forest (HF)) that have sugar maple (Acersaccharum Marsh.) as the major overstory component and are underlain by Spodosols (Podzols). TLW and HF are located in central Ontario (Canada) and the Adirondack Mountains of New York (U.S.A), respectively. Major differences between the TLW and HF sites included stand age (300 and 100 years for TLW and HF, respectively), age of dominant trees (150–300 and 100 years for TLW and HF, respectively), and the presence of American beech (Fagusgrandifolia Ehrh.) at HF as well as lower inputs of SO42− and NO3− (differences of 99 and 31 mol ion charge (molc)•ha−1•year−1, respectively) at TLW. There was an increase in concentration of SO42− and NO3− after passage through the canopy at both sites. A major difference in the anion chemistry of the soil solution between the sites was the much greater leaching of NO3− at TLW compared with HF (1300 versus 18 molc•ha−1•year−1, respectively). At HF, but not TLW, there was a marked increase in SO42− flux (217 molc•ha−1•year−1) when water leached from the forest floor through the mineral soil. The mineral soil was the largest pool (>80%) of N and S for both sites. The mineral soil of TLW had a C:N ratio of 16:1, which is much narrower than the 34:1 ratio at HF. This former ratio should favor accumulation of NH44+ and NO3− and subsequent NO3− leaching. Laboratory measurements suggest that the forest floor of TLW may have higher N mineralization rates than HF. Fluxes of N and S within the vegetation were generally similar at both sites, except that net requirement of N at TLW was substantially lower (difference of 9.4 kg N•ha−1•year−1). The higher NO3− leaching from TLW compared with HF may be attributed mostly to stand maturity coupled with tree mortality, but the absence of slow decomposing beech leaf litter and lower C:N ratio in the soil of the former site may also be contributing factors.


2002 ◽  
Vol 80 (1) ◽  
pp. 21-33 ◽  
Author(s):  
Amy L Ross-Davis ◽  
Katherine A Frego

To address concern for loss of bryophyte biodiversity within managed forests, we compared community composition and environmental characteristics among three disturbance regimes: (i) naturally regenerated clear-cut forests, (ii) cutover spruce plantations (established on clear-cut forest land), and (iii) afforested field spruce plantations (established on agricultural fields) across a range of ages (19–102 years) in the Acadian Forest region of New Brunswick, Canada. Abundances of all forest floor bryophyte species, available substrates, microtopographical features, and tree canopy were measured as percent cover (1 m2) in 26 stands: 12 naturally regenerated clear-cut forests, eight cutover plantations, and six afforested field plantations. Multivariate analyses indicated that both bryophyte community composition and associated environment differed significantly across disturbance regimes, with no strong trends related to time since clearing (i.e., stand age). Spruce plantations were characterized by low substrate diversity and microtopographic and canopy homogeneity. Both plantation types had lower bryophyte species richness, evenness, and diversity (H') relative to naturally regenerated clear-cut forests; cutover plantations had the highest total bryophyte cover. The bryophyte community of plantations was composed of a subset of species found within naturally regenerated clear-cut forests: many liverworts and epixylic mosses were absent, with fewer pioneer species and more perennial stayers (equivalent to K-strategists) than expected.Key words: bryophyte, disturbance regime, substrate, canopy, microtopography, plantation.


2006 ◽  
Vol 36 (2) ◽  
pp. 460-466 ◽  
Author(s):  
Leslie R Paul ◽  
Bill K Chapman ◽  
Christopher P Chanway

Tuberculate ectomycorrhizae (TEM) have been observed in decaying coarse woody debris (CWD) and may play a role in the nitrogen economy of forests. This study evaluates the occurrence of Suillus tomentosus (Kauff.) Singer, Snell and Dick TEM within CWD in Pinus contorta Dougl. ex Loud. var. latifolia Engelm. stands and relates their occurrence to CWD and soil characteristics as well as stand age. TEM were more abundant in the basal end of CWD incorporated in the forest floor than in the middle and top portions. Tubercle abundance was positively correlated with moisture and texture of CWD, degree of incorporation of CWD into the forest floor, and the amount of roots within CWD. There were significantly more TEM in CWD in young stands than in old stands and on sites with granitic soils than on sites with basaltic soils. Highly degraded CWD that is well incorporated in the forest floor appears to be an important microhabitat for the formation and occurrence of TEM.


2009 ◽  
Vol 39 (4) ◽  
pp. 802-813 ◽  
Author(s):  
John Bradford ◽  
Peter Weishampel ◽  
Marie-Louise Smith ◽  
Randall Kolka ◽  
Richard A. Birdsey ◽  
...  

Reliably estimating carbon storage and cycling in detrital biomass is an obstacle to carbon accounting. We examined carbon pools and fluxes in three small temperate forest landscapes to assess the magnitude of carbon stored in detrital biomass and determine whether detrital carbon storage is related to stand structural properties (leaf area, aboveground biomass, primary production) that can be estimated by remote sensing. We characterized these relationships with and without forest age as an additional predictive variable. Results depended on forest type. Carbon in dead woody debris was substantial at all sites, accounting for ∼17% of aboveground carbon, whereas carbon in forest floor was substantial in the subalpine Rocky Mountains (36% of aboveground carbon) and less important in northern hardwoods of New England and mixed forests of the upper Midwest (∼7%). Relationships to aboveground characteristics accounted for between 38% and 59% of the variability in carbon stored in forest floor and between 21% and 71% of the variability in carbon stored in dead woody material, indicating substantial differences among sites. Relating dead woody debris or forest floor carbon to other aboveground characteristics and (or) stand age may, in some forest types, provide a partial solution to the challenge of assessing fine-scale variability.


2016 ◽  
Vol 46 (5) ◽  
pp. 725-737 ◽  
Author(s):  
Ian D. Thompson ◽  
Philip Wiebe ◽  
David A. Kirk

Forests with old-growth white pines have been severely reduced compared with historical levels. We examined resident and cavity-nesting bird species abundances in winter and the breeding season, because some of these species may prefer old-forest habitats for breeding. We counted birds over 10 years in four mixedwood types: old pine, mature pine, mature nonpine, and selection-harvested stands. We expected that old pine stands would be selected by some species because of abundant snags and large trees for foraging. We assessed habitat use among years and changes following harvesting. Counts of nomadic species varied across years but counts for others did not. Species used old and mature pine mixedwoods equally and more than nonpine or harvested stands in winter and for breeding, but old stands were not preferred. Important variables included percent pine and large tree density. Selection harvesting benefitted Yellow-bellied Sapsuckers but reduced counts of Black-capped Chickadees and Brown Creepers. Black-capped Chickadees changed habitats between seasons and in some years. Black-backed Woodpeckers were most common in pine stands but abundant in harvested stands for 2 years following cutting. Regardless of stand age, large (>40 cm) pines provide important habitat for residents and cavity nesters.


1984 ◽  
Vol 14 (6) ◽  
pp. 763-767 ◽  
Author(s):  
C. Anthony Federer

Organic content of the forest floor decreases for several years after clear-cutting, and then slowly recovers. Thickness, bulk density, organic matter, and nitrogen content of forest floors were measured for 13 northern hardwood stands in the White Mountains of New Hampshire. Stands ranged from 1 to about 100 years in age. Forest-floor thickness varied significantly with stand age, but bulk density, organic fraction, and nitrogen fraction were independent of age. Total organic content of the forest floor agreed very well with data from Covington's (W. W. Covington 1981. Ecology, 62: 41–48) study of the same area. Both studies indicated that mature forest floors have about 80 Mg organic matter•ha−1 and 1.9 Mg nitrogen•ha−1. Within 10 or 15 years after cutting, the organic matter content of the floor decreases to 50 Mg•ha−1, and its nitrogen content to 1.1 Mg•ha−1. The question whether the decrease is rapid and the minimum broad and flat, or if the decrease is gradual and the minimum sharp, cannot be answered. The subsequent increase to levels reached in mature forest requires about 50 years. Some of the initial decrease in organic matter and nitrogen content of the forest floor may be caused by organic decomposition and nitrogen leaching, but mechanical and chemical mixing of floor into mineral soil, during and after the harvest operation, may also be important. The difference is vital with respect to maintenance of long-term productivity.


2016 ◽  
Vol 32 (5) ◽  
pp. 455-468 ◽  
Author(s):  
Sybil G. Gotsch ◽  
Nalini Nadkarni ◽  
Autumn Amici

Abstract:Epiphytes and their associated decomposing litter and arboreal soils (herein, epiphytic material, EM) are ubiquitous features of tropical montane cloud forests (TMCF) and play important roles in ecosystem function. EM intercepts water and nutrients from the atmosphere and from intercepted host tree sources, and may contribute significant inputs of these resources to the forest floor. Despite the importance of EM in the TMCF, a systematic review of the ecosystem roles of EM has not been compiled before. We have synthesized the literature that documents functions of EM in undisturbed TMCFs and discuss how these roles may be affected by disturbances, including changes in climate and land use. The range of EM biomass and water storage in the TMCF varies greatly across sites, with different amounts associated with stand age and microclimate. EM is important as habitat and food for birds and mammals, with over 200 species of birds documented as using EM in the Neotropics. Given its sensitivity to moisture, projected shifts in cloud base heights or precipitation due to changes in climate will likely have a large impact on this community and changes in EM diversity or abundance may have cascading impacts on the ecosystem function of the TMCF.


Sign in / Sign up

Export Citation Format

Share Document