Rhizobacteria associated with Miscanthus x giganteus improve metal accumulation and plant growth in the flotation tailings

2021 ◽  
Author(s):  
Tamara Rakić ◽  
Mila Pešić ◽  
Nikola Kostić ◽  
Gordana Andrejić ◽  
Djordje Fira ◽  
...  
Processes ◽  
2021 ◽  
Vol 9 (4) ◽  
pp. 598
Author(s):  
Muneeba Qurban ◽  
Cyrus Raza Mirza ◽  
Aqib Hassan Ali Khan ◽  
Walid Khalifa ◽  
Mustapha Boukendakdji ◽  
...  

The problem of metal-induced toxicity is proliferating with an increase in industrialization and urbanization. The buildup of metals results in severe environmental deterioration and harmful impacts on plant growth. In this study, we investigated the potential of two ornamental plants, Catharanthus roseus (L.) G.Don and Celosia argentea L., to tolerate and accumulate Ni, Cr, Cd, Pb, and Cu. These ornamental plants were grown in Hoagland’s nutrient solution containing metal loads (50 µM and 100 µM) alone and in combination with a synthetic chelator, ethylenediaminetetraacetic acid (EDTA) (2.5 mM). Plant growth and metal tolerance varied in both plant species for Ni, Cr, Cd, Pb, and Cu. C. roseus growth was better in treatments without EDTA, particularly in Ni, Cr, and Pb treatments, and Pb content increased in all parts of the plant. In contrast, Cd content decreased with EDTA addition. In C. argentea, the addition of EDTA resulted in improved plant biomass at both doses of Cu. In contrast, plant biomass reduced significantly in the case of Ni. In C. argentea, without EDTA, root length in Cd and Cu treatments was significantly lower than the control and other treatments. However, the addition of EDTA resulted in improved growth at both doses for Pb and Cu. Metal accumulation in C. argentea enhanced significantly with EDTA addition at both doses of Cu and Cd. Hence, it can be concluded that EDTA addition resulted in improved growth and better metal uptake than treatments without EDTA. Metal accumulation increased with EDTA addition compared to treatments without EDTA, particularly for Pb in C. roseus and Cu and Cd in C. argentea. Based on the present results, C. roseus showed a better ability to phytostabilize Cu, Cd, and Ni, while C. argentea worked better for Ni, Cd, Cu, and Pb.


2019 ◽  
Vol 34 (3) ◽  
pp. 283-291 ◽  
Author(s):  
Diana Nebeská ◽  
Valentina Pidlisnyuk ◽  
Tatyana Stefanovska ◽  
Josef Trögl ◽  
Pavlo Shapoval ◽  
...  

Abstract The impact of plant growth regulators (PGRs) “Stimpo” and “Regoplant” on Miscanthus x giganteus (Mxg) biomass parameters was investigated when the plant was grown in military soils with different properties from Dolyna, Ukraine and Hradcany, Czech Republic. The results showed that PGRs positively influenced the biomass parameters when the plant was grown in soil in Dolyna with good agricultural characteristics, the influence of “Regoplant” was higher and the best results were obtained with combined treatment: application to rhizomes before planting and spraying on the biomass during vegetation. Using of PGRs did not improve the biomass parameters when the plant was grown in poor soil in Hradcany. In parallel the peculiarities of the metals uptake process were studied for the following metals: chromium (Cr), manganese (Mn), nickel (Ni), copper (Cu), zinc (Zn), strontium (Sr) and lead (Pb). The uptake behavior of the monitored elements differed based on the soil quality. According to the bioconcentration factor uptake of the abiogenic elements, Cr and Pb, was dominant in the plant roots in both soils, whereas Ni was not detected in any plant tissues. The behavior of biogenic elements (Mn, Cu, Zn) and their analogs (Sr) was different. Those elements were more intensively taken up in shoot tissues in low-nutrient sandy Hradcany soils, while they were mainly taken up in plant roots in fertile Dolyna soils. The unusual behavior of biogenic elements in the low-nutrient soils may be explained by the effect of stress. However, more research is needed focused mainly on soil properties and nutrient availability in order to confirm or disprove this hypothesis and to explore the cause of the stress. The summarized results here show that soil properties influenced Mxg biomass parameters, affected the uptake behavior of metals significantly and tested PGRs cannot be utilized universally in the production of Mxg in the poor military soils.


2018 ◽  
Vol 20 (2) ◽  
pp. 1-7 ◽  
Author(s):  
Valentina V. Pidlisnyuk ◽  
Larry E. Erickson ◽  
Josef Trögl ◽  
Pavlo Y. Shapoval ◽  
Jan Popelka ◽  
...  

Abstract Peculiarities of metals uptake by the biofuel crop Miscanthus x giganteus were explored during plant growth at soil from the military site (Sliač, Slovakia). The experiment was carried out in greenhouse during two vegetation seasons. Research soil was predominantly elevated in Fe and Ti, while other metals (As, Cu, Mn, Sr, Zn and Zr) were presented at order of magnitude lower concentrations. No inhibition of plant growth was observed. The calculated Bioconcentration Factor showed that levels of metals’ accumulation by plant roots, stems and leaves were independent of metals’ concentrations in the soil. The accumulation of metals by stems and leaves was much lower than by roots. As, Zr, Ti were almost not accumulated by stems and leaves during both seasons; accumulation of Cu, Fe, Mn, Zn and Sr was not essential which confirmed that biomass of M. x giganteus might be processed for the energy purpose.


Plants ◽  
2019 ◽  
Vol 8 (9) ◽  
pp. 295 ◽  
Author(s):  
Md. Mahadi Hasan ◽  
Md. Nashir Uddin ◽  
Iffat Ara-Sharmeen ◽  
Hesham F. Alharby ◽  
Yahya Alzahrani ◽  
...  

Phytoremediation is one of the safer, economical, and environment-friendly techniques in which plants are used to recover polluted soils, particularly those containing toxic organic substances and heavy metals. However, it is considered as a slow form of remediation, as plants take time to grow and flourish. Various amendments, including the augmentation of certain chemical substances i.e., ethylenediamine tetraacetic acid (EDTA), ethylene glycol tetra acetic acid (EGTA), and sodium dodecyl sulfate (SDS) have been used to induce and enhance the phytoextraction capacity in plants. Several reports show that chemical amendments can improve the metal accumulation in different plant parts without actually affecting the growth of the plant. This raises a question about the amount and mechanisms of chemical amendments that may be needed for potentially good plant growth and metal phytoremediation. This review provides a detailed discussion on the mechanisms undertaken by three important chemical amendments that are widely used in enhancing phytoremediation (i.e., EDTA, EGTA, and SDS) to support plant growth as well as soil phytoremediation. A core part of this review focuses on the recent advances that have been made using chemical amendments in assisting metal phytoremediation.


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 194
Author(s):  
Malinská ◽  
Pidlisnyuk ◽  
Nebeská ◽  
Erol ◽  
Medžová ◽  
...  

Miscanthus x giganteus (Mxg) is a promising second-generation biofuel crop with high production of energetic biomass. Our aim was to determine the level of plant stress of Mxg grown in poor quality soils using non-invasive physiological parameters and to test whether the stress could be reduced by application of plant growth regulators (PGRs). Plant fitness was quantified by measuring of leaf fluorescence using 24 indexes to select the most suitable fluorescence indicators for quantification of this type of abiotic stress. Simultaneously, visible stress signs were observed on stems and leaves and differences in variants were revealed also by microscopy of leaf sections. Leaf fluorescence analysis, visual observation and changes of leaf anatomy revealed significant stress in all studied subjects compared to those cultivated in good quality soil. Besides commonly used Fv/Fm (potential photosynthetic efficiency) and P.I. (performance index), which showed very low sensitivity, we suggest other fluorescence parameters (like dissipation, DIo/RC) for revealing finer differences. We can conclude that measurement of leaf fluorescence is a suitable method for revealing stress affecting Mxg in poor soils. However, none of investigated parameters proved significant positive effect of PGRs on stress reduction. Therefore, direct improvement of soil quality by fertilization should be considered for stress reduction and improving the biomass quality in this type of soils.


2007 ◽  
Vol 62 (5-6) ◽  
pp. 417-426 ◽  
Author(s):  
Abdelmalek Hakmaoui ◽  
Mohammed Ater ◽  
Károly Bóka ◽  
Matilde Barón

We have compared the effect of toxic Cu and Cd concentrations on growth, metal accumulation, and chloroplast ultrastructure of willow (Salix purpurea L.) and reed [Phragmites australis (Cav.) Trin. ex Steud.]. After a 10-day treatment, both species have tolerated to some extent the lowest concentration of both metals; however, plant growth was strongly reduced at the highest Cu and Cd concentrations. These plants could be described as Cutolerant at the lowest concentration tested, showing a higher tolerance index in reed than in willow; in contrast, willow exhibited higher tolerance against Cd. Both plants appeared to be moderate root accumulators of Cu and Cd. Ultrastructural studies revealed special features that can provide some protection against heavy metals stress, such as ferritin aggregates in the stroma. In addition, Cu and Cd induced distortion of thylakoids, reduction of grana stacks, as well as an increased number and size of plastoglobuli and peripheral vesicles.


Sign in / Sign up

Export Citation Format

Share Document