Impact of plant growth regulators and soil properties on Miscanthus x giganteus biomass parameters and uptake of metals in military soils

2019 ◽  
Vol 34 (3) ◽  
pp. 283-291 ◽  
Author(s):  
Diana Nebeská ◽  
Valentina Pidlisnyuk ◽  
Tatyana Stefanovska ◽  
Josef Trögl ◽  
Pavlo Shapoval ◽  
...  

Abstract The impact of plant growth regulators (PGRs) “Stimpo” and “Regoplant” on Miscanthus x giganteus (Mxg) biomass parameters was investigated when the plant was grown in military soils with different properties from Dolyna, Ukraine and Hradcany, Czech Republic. The results showed that PGRs positively influenced the biomass parameters when the plant was grown in soil in Dolyna with good agricultural characteristics, the influence of “Regoplant” was higher and the best results were obtained with combined treatment: application to rhizomes before planting and spraying on the biomass during vegetation. Using of PGRs did not improve the biomass parameters when the plant was grown in poor soil in Hradcany. In parallel the peculiarities of the metals uptake process were studied for the following metals: chromium (Cr), manganese (Mn), nickel (Ni), copper (Cu), zinc (Zn), strontium (Sr) and lead (Pb). The uptake behavior of the monitored elements differed based on the soil quality. According to the bioconcentration factor uptake of the abiogenic elements, Cr and Pb, was dominant in the plant roots in both soils, whereas Ni was not detected in any plant tissues. The behavior of biogenic elements (Mn, Cu, Zn) and their analogs (Sr) was different. Those elements were more intensively taken up in shoot tissues in low-nutrient sandy Hradcany soils, while they were mainly taken up in plant roots in fertile Dolyna soils. The unusual behavior of biogenic elements in the low-nutrient soils may be explained by the effect of stress. However, more research is needed focused mainly on soil properties and nutrient availability in order to confirm or disprove this hypothesis and to explore the cause of the stress. The summarized results here show that soil properties influenced Mxg biomass parameters, affected the uptake behavior of metals significantly and tested PGRs cannot be utilized universally in the production of Mxg in the poor military soils.

Agriculture ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 542
Author(s):  
Dariusz Kulus ◽  
Natalia Miler

Lamprocapnos spectabilis (L.) Fukuhara (bleeding heart) is valued both in the horticultural and pharmaceutical markets. Despite its great popularity, information on the in vitro tissue culture technology in this species is limited. There is also little knowledge on the application of plant extracts in the tissue culture systems of plants other than orchids. The aim of this study is to compare the utility of traditional plant growth regulators (PGRs) and natural extracts—obtained from the coconut shreds, as well as oat, rice, and sesame seeds—in the micropropagation and cryopreservation of L. spectabilis ‘Gold Heart’ and ‘White Gold’. The biochemical analysis of extracts composition is also included. In the first experiment related to micropropagation via axillary buds activation, the single-node explants were cultured for a 10-week-long propagation cycle in the modified Murashige and Skoog medium fortified either with 1.11 µM benzyladenine (BA) and 1.23 µM indole-3-butritic acid (IBA) or with 10% (v/v) plant extracts. A PGRs- and extract-free control was also considered. In the cryopreservation experiment, the same 10% (v/v) extracts were added into the medium during a seven-day preculture in the encapsulation-vitrification cryopreservation protocol. It was found that the impact of natural additives was cultivar- and trait-specific. In the first experiment, the addition of coconut extract favoured the proliferation of shoots and propagation ratio in bleeding heart ‘Gold Heart’. Rice extract, on the other hand, promoted callus formation in ‘White Gold’ cultivar and was more effective in increasing the propagation ratio in this cultivar than the conventional plant growth regulators (4.1 and 2.6, respectively). Sesame extract suppressed the development of the explants in both cultivars analysed, probably due to the high content of polyphenols. As for the second experiment, the addition of plant extracts into the preculture medium did not increase the survival level of the cryopreserved shoot tips (sesame and oat extracts even decreased this parameter). On the other hand, coconut extract, abundant in simple sugars and endogenous cytokinins, stimulated a more intensive proliferation and growth of shoots after rewarming of samples. Analysing the synergistic effect of conventional plant growth regulators and natural extracts should be considered in future studies related to L. spectabilis.


Author(s):  
R. Sivakumar

Background: Horsegram is an important pulse crop grown as Rabi crop in Tamil Nadu. Kharif sown crop could not flowers may be because of more number of tendrils produced as compare to Rabi sown crop. Hence, an attempt was made to reduce the number of tendrils and induce flowering in horsegram during Kharif season by plant growth regulators. Methods: A field experiment was conducted to study the impact of plant growth regulators viz., salicylic acid (100 ppm), chlormequat chloride (CCC - 250 ppm), mepiquat chloride (250 ppm), tri iodo benzoic acid (TIBA - 200 ppm) and nitrobenzene (0.2%) on physiological traits and tendril growth associated with flowering in horsegram during Kharif. Different treatments were applied through foliar application at 25 Days after sowing. Result: Among the PGRs, foliar application of TIBA registered the lowest number of tendrils (2.3) followed by CCC (3.0) compared to other treatments. Higher root length of 16.8 cm and RWC of 82.3% was found in CCC treatment. CCC also registered the highest photosynthetic rate (27.15 µmol m-2 s-1), transpiration rate (18.06 mmol m-2 s-1) and lowest leaf temperature (26°C) compared to other treatments. The highest soluble protein content of 13.1 mg g-1 was also estimated in CCC treatment followed by mepiquat chloride (12.51 mg g-1). Sucrose phosphate synthase (SPS) activity did not show any significant difference between the treatments. Number of flowers buds formed per plant was zero and hence the flowering did not take place in any treatments. Among the plant growth regulators used, TIBA and CCC registered its positive action on reduced the number of tendrils and leaf temperature, but not enough to induce flowering under Kharif season.


2016 ◽  
Vol 68 (2) ◽  
pp. 399-404 ◽  
Author(s):  
Milan Dragicevic ◽  
Ana Simonovic ◽  
Milica Bogdanovic ◽  
Angelina Subotic ◽  
Nabil Ghalawenji ◽  
...  

Primary and secondary ammonium assimilation is catalyzed by the glutamine synthetase-glutamate synthase (GS-GOGAT) pathway in plants. The Arabidopsis genome contains five cytosolic GS1 genes (GLN1;1 - GLN1;5), one nuclear gene for chloroplastic GS2 isoform (GLN2), two Fd-GOGAT genes (GLU1 and GLU2) and a GLT1 gene coding for NADH-GOGAT. Even though the regulation of GS and GOGAT isoforms has been extensively studied in response to various environmental and metabolic cues in many plant species, little is known about the effects of phytohormones on their regulation. The objective of this study was to investigate the impact of representative plant growth regulators, kinetin (KIN), abscisic acid (ABA), gibberellic acid (GA3) and 2,4-dichlorophenoxyacetic acid (2,4-D), on the expression of A. thaliana GS and GOGAT genes. The obtained results indicate that GS and GOGAT genes are differentially regulated by growth regulators in shoots and roots. KIN and 2,4-D repressed GS and GOGAT expression in roots, with little effect on transcript levels in shoots. KIN affected all tested genes; 2,4-D was apparently more selective and less potent. ABA induced the expression of GLN1;1 and GLU2 in whole seedlings, while GA3 enhanced the expression of all tested genes in shoots, except GLU2. The observed expression patterns are discussed in relation to physiological roles of investigated plant growth regulators and N-assimilating enzymes.


2018 ◽  
Vol 19 (3) ◽  
pp. 242-253
Author(s):  
Stephen Till ◽  
Kathy Lawrence ◽  
Patricia Donald ◽  
Drew Schrimsher

The southern root-knot nematode, Meloidogyne incognita, is one of the most important nematode pathogens in Alabama owing to its wide host range and yield loss on major agronomic crops. Management of root-knot nematode is undervalued in corn production owing to relatively low prices for corn at the market, less obvious symptoms, and smaller yield losses compared with cotton and soybeans, plus an overall lack of management options. However, growing successive susceptible crops in root-knot nematode-infested fields only heightens the risk of future yield loss. We evaluated use of starter fertilizers and plant growth regulators with nematicides as an economically viable option to reduce the impact of M. incognita on corn. In 2 years of research, we concluded that the combination of all three inputs provided positive economic returns in only one out of four trials. In 2016, the location with the lower root-knot nematode population density saw significant advantages with these input combinations. In 2017, dramatic advantages in early plant growth were observed with a variety of combinations, but owing to unfavorable growing conditions, yield increases were not observed. We concluded that an early plant growth increase due to applications of starter fertilizers, plant growth regulators, and nematicides often did not correlate to increased yield, although the potential exists.


Plants ◽  
2020 ◽  
Vol 9 (2) ◽  
pp. 194
Author(s):  
Malinská ◽  
Pidlisnyuk ◽  
Nebeská ◽  
Erol ◽  
Medžová ◽  
...  

Miscanthus x giganteus (Mxg) is a promising second-generation biofuel crop with high production of energetic biomass. Our aim was to determine the level of plant stress of Mxg grown in poor quality soils using non-invasive physiological parameters and to test whether the stress could be reduced by application of plant growth regulators (PGRs). Plant fitness was quantified by measuring of leaf fluorescence using 24 indexes to select the most suitable fluorescence indicators for quantification of this type of abiotic stress. Simultaneously, visible stress signs were observed on stems and leaves and differences in variants were revealed also by microscopy of leaf sections. Leaf fluorescence analysis, visual observation and changes of leaf anatomy revealed significant stress in all studied subjects compared to those cultivated in good quality soil. Besides commonly used Fv/Fm (potential photosynthetic efficiency) and P.I. (performance index), which showed very low sensitivity, we suggest other fluorescence parameters (like dissipation, DIo/RC) for revealing finer differences. We can conclude that measurement of leaf fluorescence is a suitable method for revealing stress affecting Mxg in poor soils. However, none of investigated parameters proved significant positive effect of PGRs on stress reduction. Therefore, direct improvement of soil quality by fertilization should be considered for stress reduction and improving the biomass quality in this type of soils.


2017 ◽  
Vol 48 (5) ◽  
Author(s):  
Khierallah & Al-Obaidy

This research was conducted in order to study the effect of explant type and some plant growth regulators on culture initiation of Stevia rebaudiana Bertoni in vitro. The experiments included surface sterilization and test two types of explants (shoot tips and stem nodes) and the impact of KIN and BA and IAA and IBA in the cultures initiation. Results revealed the efficiency of sodium hypochlorite (NaOCl) for disinfestation of explant at 0.050% concentration giving less contamination for shoot tips and stem nods (10% and 20% respectively). Results showed that shoot tips inoculated in MS medium plus KIN at 0.3 mg. L-1 was significantly increase the number of regenerated shoots as it produced 4.2 shoots per explant while medium without cytokinin (control) produced less number of shoots reached 1.4 shoots per explant. KIN treatment reduced shoots length as control treatment produced the highest length (6.74 cm).  The interaction between the explant type and BA concentration was significantly increase the number of regenerated shoots as shoot tips produced 3.6 shoots per explant in MS medium supplemented with 0.1 mg. L-1. BA treatment reduced shoots length as control treatment produced the highest length (6.74 cm). No positive effect was gain when auxins (IBA and IAA) were added in combination with cytokinin in culture medium. The above results can be adopted to established stevia in vitro culture successfully.


Biomolecules ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 788
Author(s):  
Md. Quamruzzaman ◽  
S. M. Nuruzzaman Manik ◽  
Sergey Shabala ◽  
Meixue Zhou

Soil salinity is one of the major abiotic stresses restricting plant growth and development. Application of plant growth regulators (PGRs) is a possible practical means for minimizing salinity-induced yield losses, and can be used in addition to or as an alternative to crop breeding for enhancing salinity tolerance. The PGRs auxin, cytokinin, nitric oxide, brassinosteroid, gibberellin, salicylic acid, abscisic acid, jasmonate, and ethylene have been advocated for practical use to improve crop performance and yield under saline conditions. This review summarizes the current knowledge of the effectiveness of various PGRs in ameliorating the detrimental effects of salinity on plant growth and development, and elucidates the physiological and genetic mechanisms underlying this process by linking PGRs with their downstream targets and signal transduction pathways. It is shown that, while each of these PGRs possesses an ability to alter plant ionic and redox homeostasis, the complexity of interactions between various PGRs and their involvement in numerous signaling pathways makes it difficult to establish an unequivocal causal link between PGRs and their downstream effectors mediating plants’ adaptation to salinity. The beneficial effects of PGRs are also strongly dependent on genotype, the timing of application, and the concentration used. The action spectrum of PGRs is also strongly dependent on salinity levels. Taken together, this results in a rather narrow “window” in which the beneficial effects of PGR are observed, hence limiting their practical application (especially under field conditions). It is concluded that, in the light of the above complexity, and also in the context of the cost–benefit analysis, crop breeding for salinity tolerance remains a more reliable avenue for minimizing the impact of salinity on plant growth and yield. Further progress in the field requires more studies on the underlying cell-based mechanisms of interaction between PGRs and membrane transporters mediating plant ion homeostasis.


Author(s):  
V. P. Karpenko

Content of the chlorophylls and carotenoids in a pigment complex is one of the most important factors that determine the productivity of crops of cereals. Although it is well known that herbicides and plant growth regulators may cause changes in the amount of pigments, there is lack of researches about their separate and integrated influence on the pigment complex of grain sorghum (Sorghum bicolor (L.) Moench). Therefore, we aimed our research to investigate the response of grain sorghum’s pigment complex to the impact of the herbicide in different combinations with the plant growth regulator and biopreparation. In result, it was found that the content of the pigments was decreasing simultaneously with increasement of the herbicide rate. However, the obtained data indicates that the complex usage of the herbicide and plant growth regulator had an auspicious influence on the pigments content, compared to the variants where only herbicide was applied. The similar auspicious effect appeared, when the herbicide was applied on the background of pre-sowing seeds treatment by the biopreparation Bioarsenal. It is noticeable that in this case the increasement of pigments content was higher than in the variants of compatible application of the herbicide and plant growth regulator. The highest indicators of the pigments content formed when the herbicide was applied compatible with the plant growth regulator on the background of pre-sowing seeds treatment. The content excess of the chlorophylls a, b, a+b and carotenoids, relatively to the control, amounted 7,4 – 9,1%, 16,0 – 18,3%, 9,4 – 11,2% and 35,5 – 40,2% respectively. It is evident that usage of the herbicide Citadel 25 OD compatibly with the plant growth regulator Endofit L1 on the background of pre-sowing seeds treatment by the biopreparation Bioarsenal is an effective measure, which allows to reduce the harmful impact of the xenobiotic on the pigment complex of grain sorghum


2022 ◽  
Vol 12 (2) ◽  
pp. 881
Author(s):  
Valentina Pidlisnyuk ◽  
Tatyana Stefanovska ◽  
Olexander Zhukov ◽  
Artem Medkow ◽  
Pavlo Shapoval ◽  
...  

The impact of the plant growth regulators (PGRs) Stimpo, Regoplant, and Charkor on the production of the second-generation energy crop Miscanthus × giganteus on marginal post-military soil was investigated during two vegetation seasons. The land, previously a tank training polygon, has not been in use since 1990 and has become marginal. Biological parameters (stem, shoot, and root lengths) and dry biomass values were evaluated in relation to the applied treatments. The multivariate general linear model (M-GLM) results showed a positive influence of Charkor on M. × giganteus development; the effect was markedly higher in the second year of vegetation. The impact of Stimpo and Regoplant was less noticeable; nevertheless, certain combinations of treatments showed satisfactory results. The M-GLM approach detected the inter-influence of the main factors of the production process, i.e., PGRs, soil, and year of growing. The results showed the predominant influence of year, PGRs and combined factor PGRs × year on the biological parameters; the other studied factors and their combinations were not as effective. Further research should focus on verifying the field-scale results for the M. × giganteus plantation established in a post-military area and compare the lab and field studies.


Sign in / Sign up

Export Citation Format

Share Document