Proteomic Analysis of Heat Stress Response in Leaves of Radish (Raphanus sativus L.)

2012 ◽  
Vol 31 (1) ◽  
pp. 195-203 ◽  
Author(s):  
Yanyu Zhang ◽  
Liang Xu ◽  
Xianwen Zhu ◽  
Yiqin Gong ◽  
Fei Xiang ◽  
...  
2011 ◽  
Vol 10 (9) ◽  
pp. 3880-3890 ◽  
Author(s):  
Shailesh Jain ◽  
Ciaren Graham ◽  
Robert L. J. Graham ◽  
Geoff McMullan ◽  
Nigel G. Ternan

2020 ◽  
Author(s):  
Jing Wang ◽  
Chengliang Liang ◽  
Sha Yang ◽  
Jingshuang Song ◽  
Xuefeng Li ◽  
...  

Abstract Background: As one of the most important vegetable crops, pepper has rich nutritional value and high economic value. Increasing heat stress due to the global warming has a negative impact on the growth and yield of pepper. Result: In the present study, we investigated the changes of phenotype, physiology, and proteome in heat-tolerant (17CL30) and heat-sensitive (05S180) pepper seedlings in response to heat stress. Phenotypic and physiological changes showed that 17CL30 had a stronger ability to resist heat stress compared with 05S180. In proteomic analysis, a total of 3,874 proteins were identified, and 1,591 proteins were considered to participate in the process of heat stress response. According to bioinformatic analysis of heat-responsive proteins, the heat tolerance of 17CL30 might be related to a higher photosynthesis, signal transduction, carbohydrate metabolism, and stress defense, compared with 05S180. Conclusion: To understand the heat stress response mechanism of pepper, an iTRAQ-based quantitative proteomic analysis was employed to identify possible heat-responsive proteins and metabolic pathways in 17CL30 and 05S180 pepper seedlings under heat stress. This study provided new insights into the molecular mechanisms involved in heat tolerance of pepper and might offer supportive reference for the breeding of new pepper variety with heat resistance.


Planta ◽  
2018 ◽  
Vol 247 (5) ◽  
pp. 1109-1122 ◽  
Author(s):  
Ronghua Wang ◽  
Yi Mei ◽  
Liang Xu ◽  
Xianwen Zhu ◽  
Yan Wang ◽  
...  

PeerJ ◽  
2021 ◽  
Vol 9 ◽  
pp. e11509
Author(s):  
Jing Wang ◽  
Chengliang Liang ◽  
Sha Yang ◽  
Jingshuang Song ◽  
Xuefeng Li ◽  
...  

Background As one of the most important vegetable crops, pepper has rich nutritional value and high economic value. Increasing heat stress due to the global warming has a negative impact on the growth and yield of pepper. Methods To understand the heat stress response mechanism of pepper, an iTRAQ-based quantitative proteomic analysis was employed to identify possible heat-responsive proteins and metabolic pathways in 17CL30 and 05S180 pepper seedlings under heat stress. Result In the present study, we investigated the changes of phenotype, physiology, and proteome in heat-tolerant (17CL30) and heat-sensitive (05S180) pepper cultivars in response to heat stress. Phenotypic and physiological changes showed that 17CL30 had a stronger ability to resist heat stress compared with 05S180. In proteomic analysis, a total of 3,874 proteins were identified, and 1,591 proteins were considered to participate in the process of heat stress response. According to bioinformatic analysis of heat-responsive proteins, the heat tolerance of 17CL30 might be related to a higher ROS scavenging, photosynthesis, signal transduction, carbohydrate metabolism, and stress defense, compared with 05S180.


2017 ◽  
Author(s):  
Xi Lan ◽  
John C. F. Hsieh ◽  
Carl J. Schmidt ◽  
Qing Zhu ◽  
Susan J. Lamont

2016 ◽  
Vol 22 (18) ◽  
pp. 2619-2639 ◽  
Author(s):  
Biljana Miova ◽  
Maja Dimitrovska ◽  
Suzana Dinevska-Kjovkarovska ◽  
Juan V. Esplugues ◽  
Nadezda Apostolova

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bin Huang ◽  
Zhinuo Huang ◽  
Ruifang Ma ◽  
Jialu Chen ◽  
Zhijun Zhang ◽  
...  

AbstractHeat shock transcription factors (HSFs) are central elements in the regulatory network that controls plant heat stress response. They are involved in multiple transcriptional regulatory pathways and play important roles in heat stress signaling and responses to a variety of other stresses. We identified 41 members of the HSF gene family in moso bamboo, which were distributed non-uniformly across its 19 chromosomes. Phylogenetic analysis showed that the moso bamboo HSF genes could be divided into three major subfamilies; HSFs from the same subfamily shared relatively conserved gene structures and sequences and encoded similar amino acids. All HSF genes contained HSF signature domains. Subcellular localization prediction indicated that about 80% of the HSF proteins were located in the nucleus, consistent with the results of GO enrichment analysis. A large number of stress response–associated cis-regulatory elements were identified in the HSF upstream promoter sequences. Synteny analysis indicated that the HSFs in the moso bamboo genome had greater collinearity with those of rice and maize than with those of Arabidopsis and pepper. Numerous segmental duplicates were found in the moso bamboo HSF gene family. Transcriptome data indicated that the expression of a number of PeHsfs differed in response to exogenous gibberellin (GA) and naphthalene acetic acid (NAA). A number of HSF genes were highly expressed in the panicles and in young shoots, suggesting that they may have functions in reproductive growth and the early development of rapidly-growing shoots. This study provides fundamental information on members of the bamboo HSF gene family and lays a foundation for further study of their biological functions in the regulation of plant responses to adversity.


Sign in / Sign up

Export Citation Format

Share Document