Development of Morphological Polarity in Embryogenesis of Cnidaria

2005 ◽  
Vol 36 (5) ◽  
pp. 298-303 ◽  
Author(s):  
A. A. Rodimov
Author(s):  
Michael Edidin

Cell surface membranes are based on a fluid lipid bilayer and models of the membranes' organization have emphasised the possibilities for lateral motion of membrane lipids and proteins within the bilayer. Two recent trends in cell and membrane biology make us consider ways in which membrane organization works against its inherent fluidity, localizing both lipids and proteins into discrete domains. There is evidence for such domains, even in cells without obvious morphological polarity and organization [Table 1]. Cells that are morphologically polarised, for example epithelial cells, raise the issue of membrane domains in an accute form.The technique of fluorescence photobleaching and recovery, FPR, was developed to measure lateral diffusion of membrane components. It has also proven to be a powerful tool for the analysis of constraints to lateral mobility. FPR resolves several sorts of membrane domains, all on the micrometer scale, in several different cell types.


1996 ◽  
Vol 199 (4) ◽  
pp. 741-747
Author(s):  
M U Ehrengruber ◽  
D A Deranleau ◽  
T D Coates

When neutrophil leukocytes are stimulated by chemotactic factors or by substratum contact, they change their shape. Shape changes are a prerequisite for cellular migration and typically involve the extrusion of thin, veil-like lamellipods and the development of morphological polarity. Stimulation also leads to changes in the neutrophil content of filamentous actin (F-actin), which is the major cytoskeletal component. Suspensions of human neutrophils stimulated with chemoattractants exhibit sinusoidal light-scattering oscillations with a period of approximately 8 s at 37 degrees C. These oscillations arise from periodic fluctuations in the cell body size caused by lamellipod extension and retraction cycles. The light-scattering oscillations are paralleled by corresponding oscillations in F-actin content. This raises the interesting possibility that cyclic actin polymerization constitutes the driving force for shape oscillations of suspended neutrophils. Similar periodic shape changes are present in neutrophils crawling on a surface, suggesting that shape oscillations are important for neutrophil motion. This review summarizes our present knowledge about shape oscillations in suspended and crawling neutrophils and discusses a possible role for these oscillations in neutrophil motility.


2005 ◽  
Vol 44 (7B) ◽  
pp. 5451-5454
Author(s):  
Satoshi Toko ◽  
Takeomi Mizutani ◽  
Hisashi Haga ◽  
Kazushige Kawabata

2017 ◽  
Author(s):  
Miriam A. Genuth ◽  
Christopher D.C. Allen ◽  
Takashi Mikawa ◽  
Orion D. Weiner

SummaryIn vivo quantitative imaging reveals that chick cranial neural crest cells throughout the migratory stream are morphologically polarized and migrate by progressively refining the polarity of their protrusions.AbstractTo move directionally, cells can bias the generation of protrusions or select among randomly generated protrusions. Here we use 3D two-photon imaging of chick branchial arch 2 directed neural crest cells to probe how these mechanisms contribute to directed movement, whether a subset or the majority of cells polarize during movement, and how the different classes of protrusions relate to one another. We find that cells throughout the stream are morphologically polarized along the direction of overall stream movement and that there is a progressive sharpening of the morphological polarity program. Neural crest cells have weak spatial biases in filopodia generation and lifetime. Local bursts of filopodial generation precede the generation of larger protrusions. These larger protrusions are more spatially biased than the filopodia, and the subset of protrusions that power motility are the most polarized of all. Orientation rather than position is the best correlate of the protrusions that are selected for cell movement. This progressive polarity refinement strategy may enable neural crest cells to efficiently explore their environment and migrate accurately in the face of noisy guidance cues.


Author(s):  
Ray Keller ◽  
John Shih ◽  
Paul Wilson

The dorsal lip of the blastopore constitutes the “organizer” of the amphibian body plan, both in terms of its tissue interactions and its morphogenetic movements of convergence and extension during gastrulation. This tissue autonomously narrows (converges) and lengthens (extends) during early development, functioning prominently in the morphogenetic movements of both gastrulation and neurulation Xenopus laevis. High resolution time-lapse recording of cell behavior in cultured explants and cell labelling studies have shown that the movements of convergence and extension are produced by radial intercalation of cells, in which several layers rearrange to produce fewer layers of greater area, and by mediolateral intercalation of cells, in which several rows of cells rearrange to produce a narrower, longer array. By labelling individual cells with the fluorescent compound, DiI, and making low light level recordings, we found that cells of the notochord intercalate mediolaterally using polarized protrusive activity at their internal medial or lateral ends. Thus polarized protrusive activity appears to play a major role in mediolateral cell intercalation after the boundary between the notochord and somites forms in the late gastrula stage.We examine further the morphology of the deep mesodermal cells with scanning electron microscopy at earlier stages, to search for morphological manifestations of a similar polarity of protrusive activity. The dorsal deep mesodermal cells of early gastrulae were exposed by rapidly pulling the. epithelial endoderm off the deep cells with forceps, in Danilchik's solution, and fixing the embryo within 15 seconds in 2% glutaraldehyde in 0.1 M sodium cacodylate buffer (pH 7.4) as described previously. The dorsal deep cells adjacent to the epithelium are elongate and aligned parallel to one another and to the circumference of the glastopore (Fig. 1). The medial and lateral ends bear broad, lamelliform protrusions (large pointers, Fig. 1, 2) whereas the anterior and posterior ends bear numerous small filiform protrusions (small pointers, Fig. 1, 2). This characteristic morphology is found only in the dorsal marginal zone, which undergoes convergence and extension by mediolateral intercalation.


Development ◽  
1983 ◽  
Vol 77 (1) ◽  
pp. 73-98
Author(s):  
Claudio D. Stern ◽  
Debora O. MacKenzie

The sodium transport properties of chick epiblast during gastrulation were studied by various techniques. It was found that the epiblast is capable of unidirectional apical tobasal sodium transport, in towards the underlying intraembryonic space. The Na-K-ATPasewas localized by [3H]ouabain binding and autoradiography near the basal surfaces of the cells, and the number of pump sites was quantified. The transport rate of sodium was determined with 22Na. Electrophysiological studies on embryos at primitive streak stages showed a transepithelial potential of about + 16 ± 5mV (basal side positive) which was sensitive to strophanthidin. Applying similar voltages but of reverse polarity to isolated sheets of epiblast caused a rapid reversal of some oftheir morphological polarity markers as well as some of their physiological functions. The relevance of these results to development is discussed.


2021 ◽  
Author(s):  
Alexandra A. Vetrova ◽  
Tatiana S. Lebedeva ◽  
Aleena A. Saidova ◽  
Daria M. Kupaeva ◽  
Yulia A. Kraus ◽  
...  

AbstractBackgroundIn almost all metazoans examined to this respect, the axial patterning system based on canonical Wnt (cWnt) signaling operates throughout the course of development. In most metazoans, gastrulation is polar, and embryos develop morphological landmarks of axial polarity, such as blastopore under control/regulation from Wnt signaling. However, in many cnidarian species, gastrulation is morphologically apolar. The question remains whether сWnt signaling providing the establishment of a body axis controls morphogenetic processes involved in apolar gastrulation.ResultsIn this study, we focused on the embryonic development ofDynamena pumila, a cnidarian species with apolar gastrulation. We thoroughly described cell behavior, proliferation, and ultrastructure and examined axial patterning in the embryos of this species. We revealed that the first signs of morphological polarity appear only after the end of gastrulation, while molecular prepatterning of the embryo does exist during gastrulation. We have shown experimentally that inD. pumila,the morphological axis is highly robust against perturbations in cWnt activity.ConclusionOur results suggest that morphogenetic processes are uncoupled from molecular axial patterning during gastrulation inD. pumila. Investigation ofD. pumilamight significantly expand our understanding of the ways in which morphological polarization and axial molecular patterning are linked in Metazoa.


2016 ◽  
Vol 113 (21) ◽  
pp. 5952-5957 ◽  
Author(s):  
Jin Man Kim ◽  
Minji Lee ◽  
Nury Kim ◽  
Won Do Heo

Cell migration is controlled by various Ca2+signals. Local Ca2+signals, in particular, have been identified as versatile modulators of cell migration because of their spatiotemporal diversity. However, little is known about how local Ca2+signals coordinate between the front and rear regions in directionally migrating cells. Here, we elucidate the spatial role of local Ca2+signals in directed cell migration through combinatorial application of an optogenetic toolkit. An optically guided cell migration approach revealed the existence of Ca2+sparklets mediated by L-type voltage-dependent Ca2+channels in the rear part of migrating cells. Notably, we found that this locally concentrated Ca2+influx acts as an essential transducer in establishing a global front-to-rear increasing Ca2+gradient. This asymmetrical Ca2+gradient is crucial for maintaining front–rear morphological polarity by restricting spontaneous lamellipodia formation in the rear part of migrating cells. Collectively, our findings demonstrate a clear link between local Ca2+sparklets and front–rear coordination during directed cell migration.


Sign in / Sign up

Export Citation Format

Share Document