The role of MrbHLH1 and MrMYB1 in regulating anthocyanin biosynthetic genes in tobacco and Chinese bayberry (Myrica rubra) during anthocyanin biosynthesis

2013 ◽  
Vol 115 (3) ◽  
pp. 285-298 ◽  
Author(s):  
Xiao-Fen Liu ◽  
Xue-Ren Yin ◽  
Andrew C. Allan ◽  
Kui Lin-Wang ◽  
Yan-Na Shi ◽  
...  
2020 ◽  
Author(s):  
Weihua Qiao ◽  
Yanyan Wang ◽  
Rui Xu ◽  
Ziyi Yang ◽  
Yan Sun ◽  
...  

AbstractAccumulation of anthocyanin is a desirable trait to be selected in rice domestication, but the molecular mechanism of anthocyanin biosynthesis in rice remains largely unknown. In this study, a novel allele of chromogen gene C, OrC1, from Oryza rufipongon was cloned and identified as a determinant regulator of anthocyanin biosynthesis. Although OrC1 functions in purple apiculus, leaf sheath and stigma in indica background, it only promotes purple apiculus in japonica. Transcriptome analysis revealed that OrC1 regulates flavonoid biosynthesis pathway and activates a few bHLH and WD40 genes of ternary MYB-bHLH-WD40 complex in indica. Differentially expressed genes and metabolites were found in the indica and japonica backgrounds, indicating that OrC1 activated the anthocyanin biosynthetic genes OsCHI, OsF3H, OsANS, OsINS and OsANR and produced six metabolites independently. Artificial selection and domestication of C1 gene in rice occurred on the coding region in the two subspecies independently. Our results reveal the regulatory system and domestication of C1, provide new insights into MYB transcript factor involved in anthocyanin biosynthesis, and show the potential of engineering anthocyanin biosynthesis in rice.Author summaryAccumulation of anthocyanin is a selection trait in rice domestication, whereas the mechanisms regulating the anthocyanin biosynthetic pathway in rice remain unresolved. Here, a novel allele of chromogen gene C from wild rice (Oryza rufipongon) was identified as a determinant regulator of anthocyanin biosynthesis. A key question is to what extent the involvement of the C1 gene can explain coloration variability of cultivated rice, where anthocyanin accumulation has been eliminated by artificial selection. Our results reveal the functional chromogen gene C from wild rice causes different coloration phenotypes, regulates various anthocyanin biosynthetic genes and produces different metabolites in indica and japonica. Artificial selection and domestication of the C1 gene in rice only occurs within the coding region of the two subspecies independently.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Blue J. Plunkett ◽  
Rebecca Henry-Kirk ◽  
Adam Friend ◽  
Robert Diack ◽  
Susanne Helbig ◽  
...  

AbstractEnvironmentally-responsive genes can affect fruit red colour via the activation of MYB transcription factors. The apple B-box (BBX) gene, BBX33/CONSTANS-like 11 (COL11) has been reported to influence apple red-skin colour in a light- and temperature-dependent manner. To further understand the role of apple BBX genes, other members of the BBX family were examined for effects on colour regulation. Expression of 23 BBX genes in apple skin was analysed during fruit development. We investigated the diurnal rhythm of expression of the BBX genes, the anthocyanin biosynthetic genes and a MYB activator, MYB10. Transactivation assays on the MYB10 promoter, showed that BBX proteins 1, 17, 15, 35, 51, and 54 were able to directly function as activators. Using truncated versions of the MYB10 promoter, a key region was identified for activation by BBX1. BBX1 enhanced the activation of MYB10 and MdbHLH3 on the promoter of the anthocyanin biosynthetic gene DFR. In transformed apple lines, over-expression of BBX1 reduced internal ethylene content and altered both cyanidin concentration and associated gene expression. We propose that, along with environmental signals, the control of MYB10 expression by BBXs in ‘Royal Gala’ fruit involves the integration of the expression of multiple BBXs to regulate fruit colour.


Planta ◽  
2010 ◽  
Vol 231 (4) ◽  
pp. 887-899 ◽  
Author(s):  
Shan-Shan Niu ◽  
Chang-Jie Xu ◽  
Wang-Shu Zhang ◽  
Bo Zhang ◽  
Xian Li ◽  
...  

2012 ◽  
Vol 455-456 ◽  
pp. 443-448
Author(s):  
Bo Zhou ◽  
Shu Hua Yan ◽  
Yu Hua Li

Anthocyanins are the main pigments in flowers and fruits. In most cases, anthocyanin accumulation in fruit is highly controlled by the developmental level. In this study, the cDNA fragments of three genes, chalcone synthase (CHS), dihydroflavonol 4-reductase (DFR), and anthocyanidin synthase (ANS), which are involved in the flavonoid pathway, were isolated from total RNA of strawberry ripe fruit by using polymerase chain reaction technique and labeled as probes to determine the expression of anthocyanin biosynthetic genes. Northern analysis showed that a correlation between anthocyanin accumulation and expression of the flavonoid pathway genes during the ripening of strawberry fruits. At the early stages of fruit development, the mRNA levels encoding CHS, DFR, ANS were high probably responsible for the accumulation of condensed tannins, but the levels decreased dramatically when fruits turned white from green. During the stage of pigment accumulation, their mRNA levels increased strongly to be involved anthocyanin biosynthesis. Difference of CHS in mRNA abundance was correlated with differential accumulation of anthocyanins throughout the process of fruit development. Therefore, CHS could be a key structure gene involved in anthocyanin synthesis. Furthermore, the co-ordination of expression of anthocyanin biosynthetic genes implied a common regulatory mechanism controlling the expression of structural genes in the flavonoid pathway.


2015 ◽  
Vol 112 (16) ◽  
pp. 5249-5253 ◽  
Author(s):  
Pablo Pérez-García ◽  
Yuan Ma ◽  
Marcelo J. Yanovsky ◽  
Paloma Mas

Circadian clocks sustain 24-h rhythms in physiology and metabolism that are synchronized with the day/night cycle. In plants, the regulatory network responsible for the generation of rhythms has been broadly investigated over the past years. However, little is known about the intersecting pathways that link the environmental signals with rhythms in cellular metabolism. Here, we examine the role of the circadian components REVEILLE8/LHY-CCA1-LIKE5 (RVE8/LCL5) and NIGHT LIGHT–INDUCIBLE AND CLOCK-REGULATED genes (LNK) shaping the diurnal oscillation of the anthocyanin metabolic pathway. Around dawn, RVE8 up-regulates anthocyanin gene expression by directly associating to the promoters of a subset of anthocyanin biosynthetic genes. The up-regulation is overcome at midday by the repressing activity of LNK proteins, as inferred by the increased anthocyanin gene expression in lnk1/lnk2 double mutant plants. Chromatin immunoprecipitation assays using LNK and RVE8 misexpressing plants show that RVE8 binding to target promoters is precluded in LNK overexpressing plants and conversely, binding is enhanced in the absence of functional LNKs, which provides a mechanism by which LNKs antagonize RVE8 function in the regulation of anthocyanin accumulation. Based on their previously described transcriptional coactivating function, our study defines a switch in the regulatory activity of RVE8–LNK interaction, from a synergic coactivating role of evening-expressed clock genes to a repressive antagonistic function modulating anthocyanin biosynthesis around midday.


Agriculture ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 898
Author(s):  
Yunting Zhang ◽  
Shanlin Li ◽  
Xianjie Gu ◽  
Diya Lei ◽  
Bing Zhao ◽  
...  

Red-skinned pear is a promising commercial fruit due to its attractive appearance and nutritious value. Anthocyanin is the determinant of the red coloration of the pear peel. However, differences in anthocyanin accumulation exist among red pear cultivars with different genetic backgrounds. In this study, we analyzed the anthocyanin content and gene expression patterns in the fruits and different tissues of the red pear ‘Red Zaosu’ at different developmental stages and found a difference in anthocyanin accumulation between ‘Red Zaosu’ pear and its green mutant. The data showed that the expression profiles of transcripts that encoded critical anthocyanin biosynthetic genes were basically consistent with a tendency to a decreased anthocyanin content during fruit development, indicating that a synergistic effect of these genes was responsible for anthocyanin biosynthesis and regulation. Tissue-specific expression analysis of anthocyanin biosynthetic genes showed that they could be expressed in all tissues but at different levels. PbF3H, PbDFR, and PbANS were mainly expressed during the early flowering period, which explained the reduced levels of anthocyanin content in petals. Additionally, the content of anthocyanins and the expression levels of PbDFR, PbANS, and PbMYB10 significantly decreased in the green mutant of ‘Red Zaosu’, suggesting that PbDFR, PbANS, and PbMYB10 probably play a decisive role in determining the skin coloration of ‘Red Zaosu’ and its green mutant.


2021 ◽  
Vol 12 ◽  
Author(s):  
Zhi-Zhen Fang ◽  
Kui Lin-Wang ◽  
Dan-Rong Zhou ◽  
Yan-Juan Lin ◽  
Cui-Cui Jiang ◽  
...  

Plum is one of the most important stone fruits in the world and anthocyanin-rich plums are increasingly popular due to their health-promoting potential. In this study, we investigated the mechanisms of anthocyanin accumulation in the flesh of the red-fleshed mutant of the yellow-fleshed plum ‘Sanyueli’. RNA-Seq and qRT-PCR showed that anthocyanin biosynthetic genes and the transcription factor PsMYB10.2 were upregulated in the flesh of the mutant. Functional testing in tobacco leaves indicated that PsMYB10.2 was an anthocyanin pathway activator and can activate the promoter of the anthocyanin biosynthetic genes PsUFGT and PsGST. The role of PsMYB10.2 in anthocyanin accumulation in the flesh of plum was further confirmed by virus-induced gene silencing. These results provide information for further elucidating the underlying mechanisms of anthocyanin accumulation in the flesh of plum and for the breeding of new red-fleshed plum cultivars.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jifang Zhang ◽  
Jian Zhao ◽  
Qunyun Tan ◽  
Xiaojun Qiu ◽  
Shiyong Mei

AbstractRadish (Raphanus sativus) is an important vegetable worldwide that exhibits different flesh and skin colors. The anthocyanins responsible for the red and purple coloring in radishes possess nutritional value and pharmaceutical potential. To explore the structural and regulatory networks related to anthocyanin biosynthesis and identify key genes, we performed comparative transcriptome analyses of the skin and flesh of six colored radish accessions. The transcript profiles showed that each accession had a species-specific transcript profile. For radish pigmentation accumulation, the expression levels of anthocyanin biosynthetic genes (RsTT4, RsC4H, RsTT7, RsCCOAMT, RsDFR, and RsLDOX) were significantly upregulated in the red- and purple-colored accessions, but were downregulated or absent in the white and black accessions. The correlation test, combined with metabolome (PCC > 0.95), revealed five structural genes (RsTT4, RsDFR, RsCCOAMT, RsF3H, and RsBG8L) and three transcription factors (RsTT8-1, RsTT8-2, and RsPAR1) to be significantly correlated with flavonoids in the skin of the taproot. Four structural genes (RsBG8L, RsDFR, RsCCOAMT, and RsLDOX) and nine transcription factors (RsTT8-1, RsTT8-2, RsMYB24L, RsbHLH57, RsPAR2L, RsbHLH113L, RsOGR3L, RsMYB24, and RsMYB34L) were found to be significantly correlated with metabolites in the flesh of the taproot. This study provides a foundation for future studies on the gene functions and genetic diversity of radish pigmentation and should aid in the cultivation of new valuable radish varieties.


2016 ◽  
Vol 190 ◽  
pp. 763-770 ◽  
Author(s):  
Yi-Yong Chen ◽  
Ze-Huang Zhang ◽  
Can-Yu Zhong ◽  
Xiao-Min Song ◽  
Qi-Hua Lin ◽  
...  

2013 ◽  
Vol 70 ◽  
pp. 123-132 ◽  
Author(s):  
Giorgia Carletti ◽  
Luigi Lucini ◽  
Matteo Busconi ◽  
Adriano Marocco ◽  
Jamila Bernardi

Sign in / Sign up

Export Citation Format

Share Document