Direct Observation of Cavitation Phenomenon and Hydrodynamic Lubrication Analysis of Textured Surfaces

2012 ◽  
Vol 46 (2) ◽  
pp. 147-158 ◽  
Author(s):  
Jinyu Zhang ◽  
Yonggang Meng
Author(s):  
Gracious Ngaile ◽  
Mark Gariety ◽  
Taylan Altan

The effects of textured tubes on the tribological performance in Tube Hydroforming (THF) are discussed. Textured surfaces, namely sand blasted, knurled, and as rolled surfaces were tested under various interface pressure and sliding velocity conditions. Sand blasted textured tubes were found to have the best tribological performance. It was also found that the interface pressure has a great influence on the attainment of Micro-Plasto HydroDynamic Lubrication (MPHDL) and Micro-Plasto HydroStatic Lubrication (MPHSL) conditions at the tool-workpiece interface. Preliminary finite element simulations on the deformation behavior of tube surface shows that surface textures can be optimized to enhance tribological performance.


2018 ◽  
Vol 140 (4) ◽  
Author(s):  
Hao Fu ◽  
Jinghu Ji ◽  
Yonghong Fu ◽  
Xijun Hua

The influence of donut-shaped bump texture on the hydrodynamic lubrication performance for parallel surfaces is presented in this paper. A mathematical equation has been applied to express the shape of three-dimensional donut-shaped bump texture. Numerical simulation of the pressure distribution of lubricant between a textured slider and a smooth, moving slider has been performed to analyze the geometrical parameters' influence on the hydrodynamic performance for textured surfaces. The numerical results show that the convex of the donut-shaped bump provides a microstep slider, which can form a convergent wedge and build up hydrodynamic pressure. Optimum values of horizontal spacing and bump height are obtained to maximize the hydrodynamic pressure. It is also noted that the average pressure increases monotonically with the increase of bump radius, but decreases with the increase of vertical spacing and dimple depth, respectively.


2017 ◽  
Vol 8 ◽  
pp. 2324-2338 ◽  
Author(s):  
Kangmei Li ◽  
Dalei Jing ◽  
Jun Hu ◽  
Xiaohong Ding ◽  
Zhenqiang Yao

Surface texturing is an important approach for controlling the tribological behavior of friction pairs used in mechanical and biological engineering. In this study, by utilizing the method of three-dimensional computational fluid dynamics (CFD) simulation, the lubrication model of a friction pair with micro-dimple array was established based on the Navier–Stokes equations. The typical pressure distribution of the lubricant film was analyzed. It was found that a positive hydrodynamic pressure is generated in the convergent part of the micro-dimple, while a negative hydrodynamic pressure is generated in the divergent part. With suitable parameters, the total integration of the pressure is positive, which can increase the load-carrying capacity of a friction pair. The effects of the micro-dimple parameters as well as fluid properties on tribological performance were investigated. It was concluded that under the condition of hydrodynamic lubrication, the main mechanism for the improvement in the tribological performance is the combined effects of wedging and recirculation. Within the range of parameters investigated in this study, the optimum texture density is 13%, while the optimum aspect ratio varies with the Reynolds number. For a given Reynolds number, there exists a combination of texture density and aspect ratio at which the optimum tribological performance could be obtained. Conclusions from this study could be helpful for the design of texture parameters in mechanical friction components and even in artificial joints.


Lubricants ◽  
2019 ◽  
Vol 7 (12) ◽  
pp. 103
Author(s):  
Marco Paggi ◽  
Andrea Amicarelli ◽  
Pietro Lenarda

Rough and textured surfaces are of paramount importance for lubrication, both in nature and in technology. While surface roughness relevantly influences both friction and wear, artificial surface texturing improves the performance of slider bearings as an energy efficiency action. The simulation of hydrodynamic lubrication by taking into account complex surfaces as boundaries requires the use of computational fluid dynamics (CFD) software able to predict the pressure and the velocity profile through the thickness of the fluid and at any point within the 3D domain. In the present study, a CFD–smoothed particle hydrodynamics (SPH) code is applied to simulate hydrodynamic lubrication for a linear slider bearing in the presence of a 3D rough surface, showing the capabilities of CFD–SPH in modelling such complex interaction phenomena. Numerical assessments involve the load capacity, the 3D fields of the velocity vector, and the pressure 3D field (both within the fluid domain and at the fluid–plate interface).


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Zhengyang Kang ◽  
Yonghong Fu ◽  
Jinghu Ji ◽  
Liang Tian

The aim of this technical brief is to provide a numerical approach to investigate the lubricity enhancement effect of microgrooves texture on tools' rake face. The key parameters related to cutting condition and grooves morphology were considered in the analytical model of tool–chip friction pair. The fully textured surfaces with the periodic microgrooves were systematically studied by solving the nondimensional Reynolds equation with the multigrid method. The results indicated that the microgrooves texture generates extra carrying capacity comparing to the flat tool and the optimum grooves direction is vertical to the chip sliding. Higher area density and optimum grooves width can further promote hydrodynamic lubrication. By modifying the tool rake face geometry to restrict the tool–chip slope angle, efficiency of surface texture could be greatly extended. In addition, the film's average pressure was nearly proportional to the chip velocity. Hence, the textured tool is more effective in high-speed cutting.


2016 ◽  
Vol 24 (5) ◽  
Author(s):  
Khalid Ait Hadi ◽  
Guy Bayada ◽  
Mohamed El Alaoui Talibi

AbstractIn this paper an inverse problem is considered for a non-coercive partial differential equation, issued from a mass conservation cavitation model for a slightly compressible fluid. The cavitation phenomenon and compressibility take place and are described by the Elrod model. The existence of an optimal solution is proven. Optimality conditions are derived and some numerical results are given.


2015 ◽  
Vol 88 ◽  
pp. 162-169 ◽  
Author(s):  
Giovanni Caramia ◽  
Giuseppe Carbone ◽  
Pietro De Palma

2019 ◽  
Vol 72 (5) ◽  
pp. 589-598 ◽  
Author(s):  
Vivek Kumar ◽  
Satish C. Sharma ◽  
Kuldeep Narwat

Purpose Micro-surface texturing is emerging as a possible way to enhance the tribological performance of hydrodynamic fluid film bearings. In view of this, numerical simulations are carried out to examine the influence of surface texture on performance of hybrid thrust bearing system. This paper aims to determine optimum attributes of micro-grooves for thrust bearing operating in hybrid mode. Design/methodology/approach An iterative source code based on finite element formulation of Reynolds equation has been developed to numerically simulate flow of lubricant through the bearing. Mass-conserving algorithm based on Jakobsson–Floberg–Olsson (JFO) condition has been used to numerically capture cavitation phenomenon in the bearing. Gauss Siedel method has been used to obtain steady state performance parameters of the bearings. Findings A parametric study has been performed to improve the load supporting capacity of the bearing by optimizing micro-groove attributes and configuration. It is noticed that use of full-section micro-groove is beneficial in improving the efficiency of bearing by enhancing the fluid film reaction and reducing the film frictional power losses. Originality/value This study is helpful in examining the usefulness of micro-groove textured surfaces in hybrid thrust bearing applications.


2014 ◽  
Vol 966-967 ◽  
pp. 120-125 ◽  
Author(s):  
Cédric Hubert ◽  
Krzysztof J. Kubiak ◽  
Maxence Bigerelle ◽  
Laurent Dubar

This paper proposes a new method of 3D roughness peaks curvature radius calculation and its application to tribological contact analysis as a characteristic signature of tribological contact. This method is introduced through the classical approach of calculation of radius of asperity in 2D. Actually, the proposed approach provides a generalization of Nowicki's method [], depending on horizontal lines intercepting the studied profile. Here, the basic idea consists in intercepting the rough surface by a horizontal plane and to calculate the cross section area without including “islands into islands”, i.e. the small peaks enclosed in bigger ones. Then, taking into account the maximal value of the height amplitude of the roughness included into this area, an appropriate algorithm is proposed, without requiring the classical hypothesis of derivability, which may be unstable when applied to engineering surfaces. This methodology is validated on simulated surfaces, and applied to engineering surfaces created experimentally, with a laboratory aluminium strip drawing process. The regions of the textured and lubricated specimens surface are analysed, and the results gives interesting prospects to qualitatively identify the local lubrication regimes: regions with high curvature radii correspond to severe contact (boundary/mixed lubrication regime) while regions with low curvature radii correspond to hydrodynamic lubrication regime.


Sign in / Sign up

Export Citation Format

Share Document