scholarly journals Numerical investigation of the tribological performance of micro-dimple textured surfaces under hydrodynamic lubrication

2017 ◽  
Vol 8 ◽  
pp. 2324-2338 ◽  
Author(s):  
Kangmei Li ◽  
Dalei Jing ◽  
Jun Hu ◽  
Xiaohong Ding ◽  
Zhenqiang Yao

Surface texturing is an important approach for controlling the tribological behavior of friction pairs used in mechanical and biological engineering. In this study, by utilizing the method of three-dimensional computational fluid dynamics (CFD) simulation, the lubrication model of a friction pair with micro-dimple array was established based on the Navier–Stokes equations. The typical pressure distribution of the lubricant film was analyzed. It was found that a positive hydrodynamic pressure is generated in the convergent part of the micro-dimple, while a negative hydrodynamic pressure is generated in the divergent part. With suitable parameters, the total integration of the pressure is positive, which can increase the load-carrying capacity of a friction pair. The effects of the micro-dimple parameters as well as fluid properties on tribological performance were investigated. It was concluded that under the condition of hydrodynamic lubrication, the main mechanism for the improvement in the tribological performance is the combined effects of wedging and recirculation. Within the range of parameters investigated in this study, the optimum texture density is 13%, while the optimum aspect ratio varies with the Reynolds number. For a given Reynolds number, there exists a combination of texture density and aspect ratio at which the optimum tribological performance could be obtained. Conclusions from this study could be helpful for the design of texture parameters in mechanical friction components and even in artificial joints.

Author(s):  
Gracious Ngaile ◽  
Mark Gariety ◽  
Taylan Altan

The effects of textured tubes on the tribological performance in Tube Hydroforming (THF) are discussed. Textured surfaces, namely sand blasted, knurled, and as rolled surfaces were tested under various interface pressure and sliding velocity conditions. Sand blasted textured tubes were found to have the best tribological performance. It was also found that the interface pressure has a great influence on the attainment of Micro-Plasto HydroDynamic Lubrication (MPHDL) and Micro-Plasto HydroStatic Lubrication (MPHSL) conditions at the tool-workpiece interface. Preliminary finite element simulations on the deformation behavior of tube surface shows that surface textures can be optimized to enhance tribological performance.


2019 ◽  
Vol 21 (9) ◽  
pp. 1647-1661 ◽  
Author(s):  
Cristiana Delprete ◽  
Abbas Razavykia ◽  
Paolo Baldissera

This article presents a detailed analytical model to evaluate piston skirt tribology under hydrodynamic lubrication. The contribution of the piston ring pack lubrication has been taken into account to study piston secondary motion and tribological performance. A system of nonlinear equations comprising Reynolds equation and force equilibrium is solved to calculate piston ring pack friction force and its moment about wrist pin axis. Instantaneous minimum oil film thickness at piston ring/liner interface has been estimated considering different boundary conditions: full Sommerfeld, oil separation, and Reynolds cavitation and reformation. The ring pack model has capability to be used for a wide range of ring face profiles under boundary and hydrodynamic lubrication. Piston secondary motion is evaluated using lubrication theory and equilibrium of forces and moments, to examine the effect of wrist pin location, piston skirt/liner clearance, and oil rheology. Numerical method and finite difference scheme have been used to define piston eccentricity and hydrodynamic pressure acting over the skirt.


2018 ◽  
Vol 140 (4) ◽  
Author(s):  
Hao Fu ◽  
Jinghu Ji ◽  
Yonghong Fu ◽  
Xijun Hua

The influence of donut-shaped bump texture on the hydrodynamic lubrication performance for parallel surfaces is presented in this paper. A mathematical equation has been applied to express the shape of three-dimensional donut-shaped bump texture. Numerical simulation of the pressure distribution of lubricant between a textured slider and a smooth, moving slider has been performed to analyze the geometrical parameters' influence on the hydrodynamic performance for textured surfaces. The numerical results show that the convex of the donut-shaped bump provides a microstep slider, which can form a convergent wedge and build up hydrodynamic pressure. Optimum values of horizontal spacing and bump height are obtained to maximize the hydrodynamic pressure. It is also noted that the average pressure increases monotonically with the increase of bump radius, but decreases with the increase of vertical spacing and dimple depth, respectively.


Micromachines ◽  
2019 ◽  
Vol 11 (1) ◽  
pp. 30
Author(s):  
Haiwang Li ◽  
Yujia Li ◽  
Binghuan Huang ◽  
Tiantong Xu

We conducted systematic numerical investigations of the flow characteristics within the entrance region of rectangular microchannels. The effects of the geometrical aspect ratio and roughness on entrance lengths were analyzed. The incompressible laminar Navier–Stokes equations were solved using finite volume method (FVM). In the simulation, hydraulic diameters ( D h ) ranging from 50 to 200 µm were studied, and aspect ratios of 1, 1.25, 1.5, 1.75, and 2 were considered as well. The working fluid was set as water, and the Reynolds number ranged from 0.5 to 100. The results showed a good agreement with the conducted experiment. Correlations are proposed to predict the entrance lengths of microchannels with respect to different aspect ratios. Compared with other correlations, these new correlations are more reliable because a more practical inlet condition was considered in our investigations. Instead of considering the influence of the width and height of the microchannels, in our investigation we proved that the critical role is played by the aspect ratio, representing the combination of the aforementioned parameters. Furthermore, the existence of rough elements obviously shortens the entrance region, and this effect became more pronounced with increasing relative roughness and Reynolds number. A similar effect could be seen by shortening the roughness spacing. An asymmetric distribution of rough elements decreased the entrance length compared with a symmetric distribution, which can be extrapolated to other irregularly distributed forms.


2017 ◽  
Vol 139 (5) ◽  
Author(s):  
Zhengyang Kang ◽  
Yonghong Fu ◽  
Jinghu Ji ◽  
Liang Tian

The aim of this technical brief is to provide a numerical approach to investigate the lubricity enhancement effect of microgrooves texture on tools' rake face. The key parameters related to cutting condition and grooves morphology were considered in the analytical model of tool–chip friction pair. The fully textured surfaces with the periodic microgrooves were systematically studied by solving the nondimensional Reynolds equation with the multigrid method. The results indicated that the microgrooves texture generates extra carrying capacity comparing to the flat tool and the optimum grooves direction is vertical to the chip sliding. Higher area density and optimum grooves width can further promote hydrodynamic lubrication. By modifying the tool rake face geometry to restrict the tool–chip slope angle, efficiency of surface texture could be greatly extended. In addition, the film's average pressure was nearly proportional to the chip velocity. Hence, the textured tool is more effective in high-speed cutting.


1992 ◽  
Vol 114 (1) ◽  
pp. 14-25 ◽  
Author(s):  
R. X. Dai ◽  
Q. Dong ◽  
A. Z. Szeri

In this numerical study of the approximations that led Reynolds to the formulation of classical Lubrication Theory, we compare results from (1) the full Navier-Stokes equations, (2) a lubrication theory relative to the “natural,” i.e., bipolar, coordinate system of the geometry that neglects fluid inertia, and (3) the classical Reynolds Lubrication Theory that neglects both fluid inertia and film curvature. By applying parametric continuation techniques, we then estimate the Reynolds number range of validity of the laminar flow assumption of classical theory. The study demonstrates that both the Navier-Stokes and the “bipolar lubrication” solutions converge monotonically to results from classical Lubrication Theory, one from below and the other from above. Furthermore the oil-film force is shown to be invariant with Reynolds number in the range 0 < R < Rc for conventional journal bearing geometry, where Rc is the critical value of the Reynolds number at first bifurcation. A similar conclusion also holds for the off-diagonal components of the bearing stiffness matrix, while the diagonal components are linear in the Reynolds number, in accordance with the small perturbation theory of DiPrima and Stuart.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Quentin Allen ◽  
Bart Raeymaekers

Abstract We design a pattern of microtexture features to increase hydrodynamic pressure and lubricant film thickness in a hard-on-soft bearing. We use a soft elastohydrodynamic lubrication model to evaluate the effect of microtexture design parameters and bearing operating conditions on the resulting lubricant film thickness and find that the maximum lubricant film thickness occurs with a texture density between 10% and 40% and texture aspect ratio between 1% and 14%, depending on the bearing load and operating conditions. We show that these results are similar to those of hydrodynamic textured bearing problems because the lubricant film thickness is almost independent of the stiffness of the bearing surfaces in full-film lubrication.


2018 ◽  
Vol 859 ◽  
pp. 921-948 ◽  
Author(s):  
Shantanu S. Bhat ◽  
Jisheng Zhao ◽  
John Sheridan ◽  
Kerry Hourigan ◽  
Mark C. Thompson

The individual and combined influences of aspect ratio ($A$), Reynolds number ($Re$) and Rossby number ($Ro$) on the leading-edge vortex (LEV) of a rotating wing of insect-like planform are investigated numerically. A previous study from our group has determined the wingspan to be an appropriate length scale governing the large-scale LEV structure. In this study, the $A$ range considered is further extended, to show that this scaling works well as $A$ is varied by a factor of 4 ($1.8\leqslant A\leqslant 7.28$) and over a $Re$ range of two orders of magnitude. The present study also extends this scaling for wings with an offset from the rotation axis, which is typically the case for actual insects and often for experiments. Remarkably, the optimum range of $A$ based on the lift coefficients at different $Re$ coincides with that observed in nature. The scaling based on the wingspan is extended to the acceleration terms of the Navier–Stokes equations, suggesting a modified scaling of $Ro$, which decouples the effects of $A$. A detailed investigation of the flow structures, by increasing $Ro$ in a wide range, reveals the weakening of the LEV due to the reduced spanwise flow, resulting in a reduced lift. Overall, the use of span-based scaling of $Re$ and $Ro$, together with $A$, may help reconcile apparent conflicting trends between observed variations in aerodynamic performance in different sets of experiments and simulations.


2012 ◽  
Vol 134 (3) ◽  
Author(s):  
Saeid Dousti ◽  
Jianming Cao ◽  
Amir Younan ◽  
Paul Allaire ◽  
Tim Dimond

This paper extends the theory originally developed by Tichy (Tichy and Bou-Said, 1991, Hydrodynamic Lubrication and Bearing Behavior With Impulsive Loads,” STLE Tribol. Trans. 34, pp. 505–512) for impulsive loads to high reduced Reynolds number lubrication. The incompressible continuity equation and Navier-Stokes equations, including inertia terms, are simplified using an averaged velocity approach to obtain an extended form of short bearing Reynolds equation which applies to both laminar and turbulent flows. A full kinematic analysis of the short journal bearing is developed. Pressure profiles and linearized stiffness, damping and mass coefficients are calculated for different operating conditions. A time transient solution is developed. The change in the rotor displacements when subjected to unbalance forces is explored. Several comparisons between conventional Reynolds equation solutions and the extended Reynolds number form with temporal inertia effects are presented and discussed. In the specific cases considered in this paper, the primary conclusion is that the turbulence effects are significantly more important than inertia effects.


Sign in / Sign up

Export Citation Format

Share Document