The effects of supplementing Acacia mearnsii tannin extract on dairy cow dry matter intake, milk production, and methane emission in a tropical pasture

2017 ◽  
Vol 49 (8) ◽  
pp. 1663-1668 ◽  
Author(s):  
Tiago Pansard Alves ◽  
Aline Cristina Dall-Orsoletta ◽  
Henrique Mendonça Nunes Ribeiro-Filho
animal ◽  
2011 ◽  
Vol 5 (11) ◽  
pp. 1805-1813 ◽  
Author(s):  
E. Kennedy ◽  
J. Curran ◽  
B. Mayes ◽  
M. McEvoy ◽  
J.P. Murphy ◽  
...  

2020 ◽  
Vol 12 (3) ◽  
pp. 1
Author(s):  
Holger Martens

The transition period of the dairy cow involves the end of pregnancy, parturition, and the onset of lactation. Multifaceted and rapid changes occur during this time, and in particular, the increase of milk secretion requires the large-scale reorientation of metabolism. The underlying mechanisms of this metabolic regulation are collectively named homeorhesis, a process that governs milk production during this phase and that exhibits (A) a chronic nature, (B) the simultaneous inclusion of multiple tissues, and (C) altered responses to homeostatic signals, but (D) no direct feedback mechanisms for possible control or limitation. Priority of milk production is one important consequence of this homeorhetic regulation with possible constraints on other physiological functions. These general properties of the homeorhetic regulation of milk secretion are specifically characterized by a) milk production according milking (suckling) frequency, b) a natural but inadequate dry matter intake, c) the mobilization of fat acids + glycerol from adipose tissue and of amino acids from protein, d) the partitioning of metabolites, IgG, and dietary nutrients to the mammary gland, e) the stimulation of milk production by high protein intake, and f) a negligible negative energy balance (NEB) at low milk production. Such a combination assures the optimal milk yield for the nutrition of the calf and for its successful survival but without a metabolic challenge or health risk for the cow. However, selection for higher milk production (uncoupled from calf nutrition) and management have changed the above-listed properties, and the regulation of homeorhetic milk production of the modern high-producing dairy cow is nowadays mostly characterized by a) increasing and maximal milk production at increased milking frequency and, under certain circumstances, the uncoupling of the GH-IGF-1 axis, b) enduring insufficient dry matter intake in relation to requirement, c) the mobilization of energy (lipolysis) and release of non-esterified fatty acids (NEFA) above the acute requirement, d) the mobilization of amino acids, e) the partitioning of metabolites, IgG, and dietary nutrient to the mammary gland, f) the potential enhanced partitioning of energy to the mammary gland at high CP intake, g) a sudden and long-lasting NEB, and h) possibly lower weight gain or even net loss of energy during the entire lactation period. These altered and often unfavorable characteristics of high milk production are, furthermore, still regulated by homeorhesis and are thus also given top priority, lack feedback control, and possibly ensue at the expense of other functions without regard for health risks. Hence, the promotion of milk yield by breeding or management might cause metabolic overload, imbalances, or even antagonisms and makes possible health hazards evident. The high incidence of various diseases, the untimely culling rates, and the increasing number of dead cows during early lactation support the assumption of general health threats at high milk production. For this reason, more attention should be paid to the physiological mechanisms of homeorhetic-regulated milk production, its indisputable alterations by breeding and management, and the resulting health risks.


Author(s):  
T. W. J. Keady ◽  
J. J. Murphy

In general cows have higher intakes and higher milk yields when outdoors grazing pasture compared to indoors consuming grass silage. However, this observation is not valid as a direct comparison of grass and silage due to the following reasons. Firstly, the cows consuming the silage and grass are usually at different stages of lactation and secondly the silage has not been produced from the herbage being grazed. There is little information available in the literature comparing the intakes of grass and silage harvested from the same sward at the same stage of maturity when fed to lactating dairy animals at similar stages of lactation. The present study was initiated as part of a series of studies at this Institute, to evaluate factors affecting silage intake. The main aims of this study were to determine the actual effect which ensiling “per se” had firstly on dry matter intake and secondly on animal performance by the lactating dairy cow.


Author(s):  
Mustafa Güçlü Sucak ◽  
Uğur Serbester ◽  
Murat Görgülü

Effects of two dietary levels of starch and crude protein on performance of dairy cow fed low roughage level (70:30 concentrate to roughage) were investigated. Twenty eight Holstein cows were randomly assigned to one of four dietary treatments in a 2 x 2 factorial arrangement. Factors were two dietary level of starch (14% and 22%) and crude protein (15% and 18%). Wheat straw was used as sole roughage source. The study was continued 6 weeks. Dry matter intake was not affected (P>0.05) by the dietary treatments in the study. Milk and protein yield (kg/d) were higher (P


Animals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1822
Author(s):  
Cory T. Parsons ◽  
Julia M. Dafoe ◽  
Samuel A. Wyffels ◽  
Timothy DelCurto ◽  
Darrin L. Boss

We evaluated heifer post-weaning residual feed intake (RFI) classification and cow age on dry matter intake (DMI) at two stages of production. Fifty-nine non-lactating, pregnant, (Study 1) and fifty-four lactating, non-pregnant (Study 2) commercial black Angus beef cows were grouped by age and RFI. Free-choice, hay pellets were fed in a GrowSafe feeding system. In Study 1, cow DMI (kg/d) and intake rate (g/min) displayed a cow age effect (p < 0.01) with an increase in DMI and intake rate with increasing cow age. In Study 2, cow DMI (kg/d) and intake rate (g/min) displayed a cow age effect (p < 0.02) with an increase in DMI and intake rate with increasing cow age. Milk production displayed a cow age × RFI interaction (p < 0.01) where both 5–6-year-old and 8–9-year-old low RFI cows produced more milk than high RFI cows. For both studies, intake and intake behavior were not influenced by RFI (p ≥ 0.16) or cow age × RFI interaction (p ≥ 0.21). In summary, heifer’s post-weaning RFI had minimal effects on beef cattle DMI or intake behavior, however, some differences were observed in milk production.


1983 ◽  
Vol 63 (1) ◽  
pp. 155-162 ◽  
Author(s):  
L. KUNG Jr. ◽  
B. W. JESSE ◽  
J. W. THOMAS ◽  
J. T. HUBER ◽  
R. S. EMERY

Whole barley was treated with sodium hydroxide (NaOH) in laboratory trials. Dry matter disappearance from nylon bags in the rumen of whole barley treated with 2.5, 3.5, or 4.9% NaOH for 30 h was 59.6, 72.4, and 93.0%, respectively, compared with 82.2% for untreated ground barley. In a subsequent lactation trial, 24 Holstein cows (eight per treatment) were fed high moisture ground ear corn, high moisture rolled barley or high moisture whole barley treated with 3.5% NaOH. Milk persistencies tended to be greater for cows fed high moisture rolled barley, next for ground ear corn and least for NaOH-treated barley. Milk composition was similar for all treatments. Dry matter intake was greatest for cows fed ground ear corn and lower for those fed the barley diets. Alpha-linked glucose and pH of feces were similar for cows fed ground ear corn and high moisture rolled barley diets, but fecal pH was lower and alpha-linked glucose concentrations three times greater for NaOH-treated barley. Digestibility percents of dry matter, acid detergent fiber and nitrogen were 61.4, 25.3, 64.7 for ground ear corn; 64.4, 38.0, 67.1 for high moisture rolled barley; and 56.8, 43.2, 54.8 for NaOH-treated barley, respectively. Rumen grain turnover estimated by excretion of ytterbium in feces was greatest for NaOH-treated barley (9.09%/h), intermediate for ground ear corn (6.10%/h) and lowest for high moisture rolled barley (4.93%/h). Key words: Dairy, sodium hydroxide, high moisture grains


2021 ◽  
pp. 106559
Author(s):  
Francisco Enrique Franco Febres ◽  
Lucrecia Aguirre Terrazas ◽  
Javier Ñaupari Vasquez ◽  
Juan Elmer Moscoso Muñoz ◽  
Felipe San Martín Howard ◽  
...  

2020 ◽  
Vol 9 (8) ◽  
pp. e347985005
Author(s):  
Alexandre Bernardi ◽  
Antonio Waldimir Leopoldino da Silva ◽  
Catia Capeletto ◽  
Felipe Junior Portela da Silva ◽  
Renata Cristina Defiltro ◽  
...  

This study compared the effects of unchopped and chopped hay on milk production and composition, feed digestibility, and physiology of Lacaune sheep. Eighteen ewes were stratified by parity (two or three), days of lactation (60 ± 3.7 days), and milk production (1.04 L/ewe/day), and were randomly assigned to 1 of 2 treatments: 1) Unchopped or 2) Chopped Tifton 85 hay. Corn silage and concentrate were also provided. Chopped hay ewes gave lower (P≤0.01) dry matter intake and greater (P=0.02) crude protein digestibility. No effects of treatment were detected (P≥0.38) for the digestibility of dry matter, or of neutral and acid detergent fibers. Chopped hay ewes had greater (P≤0.01) milk production (d 7 and d 12), lactation persistence, and feed efficiency. Ewes eating chopped hay had greater (P=0.03) protein concentration in their milk. However, there were no effects of treatment × day and treatments (P≥0.16) for concentrations of fat, lactose, minerals, deffated dry extract, or density. Ewes eating chopped hay presented lower (P<0.01) serum concentrations of urea and tended to have lower (P=0.10) serum concentrations of glucose only on d 12. However, there were no effects of treatment × day and treatments (P≥0.16) for serum concentrations of total protein, albumin, globulin, triglycerides, or cholesterol. These data suggest that chopped hay promotes lower dry matter intake and serum concentrations of glucose and urea, but improves milk production, lactation persistence, feed efficiency, and protein concentration.


Sign in / Sign up

Export Citation Format

Share Document