scholarly journals Impacts of short-term water restriction on Pelibuey sheep: physiological and blood parameters

2022 ◽  
Vol 54 (1) ◽  
Author(s):  
Jorge Orlay Serrano ◽  
Asiel Villares-Garachana ◽  
Nelson Correa-Herrera ◽  
Abel González-Morales ◽  
Lisbet Pérez-Bonachea ◽  
...  
2021 ◽  
Author(s):  
Jorge Orlay Serrano ◽  
Asiel Villares-Garachana ◽  
Nelson Correa-Herrera ◽  
Abel González-Morales ◽  
Lisbet Pérez-Bonachea ◽  
...  

Abstract One of the projected effects of climate change is a reduction in rainfall in certain regions of the world. Hence, the agricultural and livestock sectors will have to cope with increasing incidences of water shortage whilst still maintaining productivity levels to feed an ever increasing global population. This short communication reports on the effect of a two week water stress on Pelibuey sheep in Cuba. Three treatments were compared viz. supply of water ad libitum; water supplied once every 3 or 6 d. Following exposure to the water stress, the results showed no changes in sheep body weight or rectal temperature. However, respiration frequency was affected with water stress causing a reduction from 23.3 to 13.3 respirations per min in control and water deprived animals, respectively. Furthermore, there was evidence for hemoconcentration in response to water stress (levels of hemoglobin increased from 9.2 to 13.1 g L-1 and hematocrits from 27.6 to 39.3% in the control group and animals restricted to water once every 6 d. The imposed water stress was also evident in the reduction of lymphocytes (from ±63 to 43%), and in increase of neutrophils (from approximately 38 to 54%) and leukocytes (from 3133 to 4933 per mm3). The results indicated a decline in the levels of antioxidants, i.e. SOD (SOD from approximately 13 to 10 U mg-1 protein and CAT activity from 23 to 9 U mg-1 protein. To the best of our knowledge, this is the first report on the response of Pelibuey sheep to short-term water shortage stress under Cuban environmental conditions.


Animals ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 722
Author(s):  
Jang-Hoon Jo ◽  
Jalil Ghassemi Nejad ◽  
Dong-Qiao Peng ◽  
Hye-Ran Kim ◽  
Sang-Ho Kim ◽  
...  

This study aims to characterize the influence of short-term heat stress (HS; 4 day) in early lactating Holstein dairy cows, in terms of triggering blood metabolomics and parameters, milk yield and composition, and milk microRNA expression. Eight cows (milk yield = 30 ± 1.5 kg/day, parity = 1.09 ± 0.05) were homogeneously housed in environmentally controlled chambers, assigned into two groups with respect to the temperature humidity index (THI) at two distinct levels: approximately ~71 (low-temperature, low-humidity; LTLH) and ~86 (high-temperature, high-humidity; HTHH). Average feed intake (FI) dropped about 10 kg in the HTHH group, compared with the LTLH group (p = 0.001), whereas water intake was only numerically higher (p = 0.183) in the HTHH group than in the LTLH group. Physiological parameters, including rectal temperature (p = 0.001) and heart rate (p = 0.038), were significantly higher in the HTHH group than in the LTLH group. Plasma cortisol and haptoglobin were higher (p < 0.05) in the HTHH group, compared to the LTLH group. Milk yield, milk fat yield, 3.5% fat-corrected milk (FCM), and energy-corrected milk (ECM) were lower (p < 0.05) in the HTHH group than in the LTLH group. Higher relative expression of milk miRNA-216 was observed in the HTHH group (p < 0.05). Valine, isoleucine, methionine, phenylalanine, tyrosine, tryptophan, lactic acid, 3-phenylpropionic acid, 1,5-anhydro-D-sorbitol, myo-inositol, and urea were decreased (p < 0.05). These results suggest that early lactating cows are more vulnerable to short-term (4 day) high THI levels—that is, HTHH conditions—compared with LTLH, considering the enormous negative effects observed in measured blood metabolomics and parameters, milk yield and compositions, and milk miRNA-216 expression.


1997 ◽  
Vol 272 (6) ◽  
pp. E997-E1001 ◽  
Author(s):  
H. G. Leuvenink ◽  
E. J. Bleumer ◽  
L. J. Bongers ◽  
J. van Bruchem ◽  
D. van der Heide

The hypothesis that propionate is a short-term feed intake-regulating agent was studied. Mature wether sheep were infused over 20 min with Na propionate into the mesenteric vein, while feed intake and feeding pattern were monitored over 1.5 h. Feed intake was reduced by infusions at 2 mmol/min, which were associated with marked increases in jugular as well as portal concentrations of insulin, glucose, and propionate. In a second experiment, animals were infused with 2 mmol/min Na propionate into the portal vein. No decrease in feed intake was observed, although there were similar increases in insulin, glucose, and propionate as found in mesenteric vein-infused animals. It is concluded that mesenteric propionate in high doses acts as a satiety factor. Possible explanations for the difference between site of infusion may be a different distribution of the infusate over the liver and/or the presence of propionate-sensitive receptors in the mesenteric/portal vein region. It seems unlikely that insulin concentrations are involved in inducing satiety in propionate-infused animals.


2018 ◽  
Vol 50 (5S) ◽  
pp. 276
Author(s):  
Joseph C. Watso ◽  
Matthew C. Babcock ◽  
Austin T. Robinson ◽  
Kamila U. Migdal ◽  
Sean D. Stocker ◽  
...  

2000 ◽  
Vol 279 (1) ◽  
pp. F46-F53 ◽  
Author(s):  
Carolyn A. Ecelbarger ◽  
Gheun-Ho Kim ◽  
James Terris ◽  
Shyama Masilamani ◽  
Carter Mitchell ◽  
...  

Sodium transport is increased by vasopressin in the cortical collecting ducts of rats and rabbits. Here we investigate, by quantitative immunoblotting, the effects of vasopressin on abundances of the epithelial sodium channel (ENaC) subunits (α, β, and γ) in rat kidney. Seven-day infusion of 1-deamino-[8-d-arginine]-vasopressin (dDAVP) to Brattleboro rats markedly increased whole kidney abundances of β- and γ-ENaC (to 238% and 288% of vehicle, respectively), whereas α-ENaC was more modestly, yet significantly, increased (to 142% of vehicle). Similarly, 7-day water restriction in Sprague-Dawley rats resulted in significantly increased abundances of β- and γ- but no significant change in α-ENaC. Acute administration of dDAVP (2 nmol) to Brattleboro rats resulted in modest, but significant, increases in abundance for all ENaC subunits, within 1 h. In conclusion, all three subunits of ENaC are upregulated by vasopressin with temporal and regional differences. These changes are too slow to play a major role in the short-term action of vasopressin to stimulate sodium reabsorption in the collecting duct. Long-term increases in ENaC abundance should add to the short-term regulatory mechanisms (undefined in this study) to enhance sodium transport in the renal collecting duct.


2000 ◽  
Vol 80 (1) ◽  
pp. 97-104 ◽  
Author(s):  
B. T. Li ◽  
R. J. Christopherson ◽  
S. J. Cosgrove

The hypothesis that water restriction reduces metabolic rate and contributes to energy conservation of sheep, and induces changes in blood parameters was tested. Four of eight adult sheep were housed in either a warm (24.8 ± 1.5 °C) or cold (0.4 ± 1.2 °C) environment and fed a diet of alfalfa pellets at 1.2 × maintenance. Each sheep was fasted with or without water according to a crossover design. Average heat production (HP) and rectal temperature (Tr) were higher (P < 0.05) in the cold than in the warm. Fasting decreased HP and Tr (P < 0.05). Water restriction had no additional effect on HP and Tr. Fasting and fasting plus water restriction influenced plasma osmolality and creatinine concentration. Plasma creatinine concentration was lower (P < 0.01) and haemoglobin (Hb) concentration higher in the cold than in the warm environment. Hb concentration was increased with water restriction (P < 0.01) in the warm environment. Plasma cortisol concentration was altered by fasting. Packed cell volume (PCV) in blood, plasma volume and plasma aldosterone were not affected by treatments. The results suggest that water restriction, per se, for 3 d does not suppress metabolic rate in sheep below that resulting from fasting alone. Key words: Heat production, sheep, temperature, water restriction


2008 ◽  
Vol 78 (1-3) ◽  
pp. 169-175 ◽  
Author(s):  
D. Casamassima ◽  
R. Pizzo ◽  
M. Palazzo ◽  
A.G. D’Alessandro ◽  
G. Martemucci

Sign in / Sign up

Export Citation Format

Share Document