scholarly journals Entrack: Probabilistic Spherical Regression with Entropy Regularization for Fiber Tractography

Author(s):  
Viktor Wegmayr ◽  
Joachim M. Buhmann

Abstract White matter tractography, based on diffusion-weighted magnetic resonance images, is currently the only available in vivo method to gather information on the structural brain connectivity. The low resolution of diffusion MRI data suggests to employ probabilistic methods for streamline reconstruction, i.e., for fiber crossings. We propose a general probabilistic model for spherical regression based on the Fisher-von-Mises distribution, which efficiently estimates maximum entropy posteriors of local streamline directions with machine learning methods. The optimal precision of posteriors for streamlines is determined by an information-theoretic technique, the expected log-posterior agreement concept. It relies on the requirement that the posterior distributions of streamlines, inferred on retest measurements of the same subject, should yield stable results within the precision determined by the noise level of the data source.

2021 ◽  
Vol 11 (1) ◽  
pp. 53
Author(s):  
Sara Kierońska ◽  
Milena Świtońska ◽  
Grzegorz Meder ◽  
Magdalena Piotrowska ◽  
Paweł Sokal

Fiber tractography based on diffuse tensor imaging (DTI) can reveal three-dimensional white matter connectivity of the human brain. Tractography is a non-invasive method of visualizing cerebral white matter structures in vivo, including neural pathways surrounding the ischemic area. DTI may be useful for elucidating alterations in brain connectivity resulting from neuroplasticity after stroke. We present a case of a male patient who developed significant mixed aphasia following ischemic stroke. The patient had been treated by mechanical thrombectomy followed by an early rehabilitation, in conjunction with transcranial direct current stimulation (tDCS). DTI was used to examine the arcuate fasciculus and uncinate fasciculus upon admission and again at three months post-stroke. Results showed an improvement in the patient’s symptoms of aphasia, which was associated with changes in the volume and numbers of tracts in the uncinate fasciculus and the arcuate fasciculus.


2016 ◽  
Author(s):  
Ariel Rokem ◽  
Hiromasa Takemura ◽  
Andrew Bock ◽  
K. Suzanne Scherf ◽  
Marlene Behrmann ◽  
...  

AbstractVisual neuroscience has traditionally focused much of its attention on understanding the response properties of neurons along the visual pathways. This review focuses instead on the properties of the white matter connections between these neurons. Specifically, we provide an introduction to methods to study the human visual white matter using diffusion MRI (dMRI). This method allows us to measure the white matter connections in individual visual systems in vivo, allows us to trace long-range connections between different parts of the visual system, and to measure the biophysical properties of these connections. We explain the principles underlying dMRI measurements and the basics of modeling these data. We review a range of findings from recent studies on connections between different visual field maps, on the effects of visual impairment on the white matter, and on the properties underlying networks that process visual information that supports visual face recognition. Finally, we discuss a few promising directions for future studies. These include new methods for analysis of MRI data, open data-sets that are becoming available to study brain connectivity and white matter properties, and open-source software for the analysis of these data.


2014 ◽  
Vol 60 (5) ◽  
pp. 215-222 ◽  
Author(s):  
Cristina Goga ◽  
Zeynep Firat ◽  
Klara Brinzaniuc ◽  
Is Florian

Abstract Objective: The ultimate anatomy of the Meyer’s loop continues to elude us. Diffusion tensor imaging (DTI) and diffusion tensor tractography (DTT) may be able to demonstrate, in vivo, the anatomy of the complex network of white matter fibers surrounding the Meyer’s loop and the optic radiations. This study aims at exploring the anatomy of the Meyer’s loop by using DTI and fiber tractography. Methods: Ten healthy subjects underwent magnetic resonance imaging (MRI) with DTI at 3 T. Using a region-of-interest (ROI) based diffusion tensor imaging and fiber tracking software (Release 2.6, Achieva, Philips), sequential ROI were placed to reconstruct visual fibers and neighboring projection fibers involved in the formation of Meyer’s loop. The 3-dimensional (3D) reconstructed fibers were visualized by superimposition on 3-planar MRI brain images to enhance their precise anatomical localization and relationship with other anatomical structures. Results: Several projection fiber including the optic radiation, occipitopontine/parietopontine fibers and posterior thalamic peduncle participated in the formation of Meyer’s loop. Two patterns of angulation of the Meyer’s loop were found. Conclusions: DTI with DTT provides a complimentary, in vivo, method to study the details of the anatomy of the Meyer’s loop.


2021 ◽  
Author(s):  
Kelsey D Cobourn ◽  
Imazul Qadir ◽  
Islam Fayed ◽  
Hepzibha Alexander ◽  
Chima O Oluigbo

Abstract BACKGROUND Commercial magnetic resonance-guided laser interstitial thermal therapy (MRgLITT) systems utilize a generalized Arrhenius model to estimate the area of tissue damage based on the power and time of ablation. However, the reliability of these estimates in Vivo remains unclear. OBJECTIVE To determine the accuracy and precision of the thermal damage estimate (TDE) calculated by commercially available MRgLITT systems using the generalized Arrhenius model. METHODS A single-center retrospective review of pediatric patients undergoing MRgLITT for lesional epilepsy was performed. The area of each lesion was measured on both TDE and intraoperative postablation, postcontrast T1 magnetic resonance images using ImageJ. Lesions requiring multiple ablations were excluded. The strength of the correlation between TDE and postlesioning measurements was assessed via linear regression. RESULTS A total of 32 lesions were identified in 19 patients. After exclusion, 13 pairs were available for analysis. Linear regression demonstrated a strong correlation between estimated and actual ablation areas (R2 = .97, P < .00001). The TDE underestimated the area of ablation by an average of 3.92% overall (standard error (SE) = 4.57%), but this varied depending on the type of pathologic tissue involved. TDE accuracy and precision were highest in tubers (n = 3), with average underestimation of 2.33% (SE = 0.33%). TDE underestimated the lesioning of the single hypothalamic hamartoma in our series by 52%. In periventricular nodular heterotopias, TDE overestimated ablation areas by an average of 13% (n = 2). CONCLUSION TDE reliability is variably consistent across tissue types, particularly in smaller or periventricular lesions. Further investigation is needed to understand the accuracy of this emerging minimally invasive technique.


2003 ◽  
Vol 95 (2) ◽  
pp. 829-837 ◽  
Author(s):  
Taija Finni ◽  
John A. Hodgson ◽  
Alex M. Lai ◽  
V. Reggie Edgerton ◽  
Shantanu Sinha

The distribution of strain along the soleus aponeurosis tendon was examined during voluntary contractions in vivo. Eight subjects performed cyclic isometric contractions (20 and 40% of maximal voluntary contraction). Displacement and strain in the apparent Achilles tendon and in the aponeurosis were calculated from cine phase-contrast magnetic resonance images acquired with a field of view of 32 cm. The apparent Achilles tendon lengthened 2.8 and 4.7% in 20 and 40% maximal voluntary contraction, respectively. The midregion of the aponeurosis, below the gastrocnemius insertion, lengthened 1.2 and 2.2%, but the distal aponeurosis shortened 2.1 and 2.5%, respectively. There was considerable variation in the three-dimensional anatomy of the aponeurosis and muscle-tendon junction. We suggest that the nonuniformity in aponeurosis strain within an individual was due to the presence of active and passive motor units along the length of the muscle, causing variable force along the measurement site. Force transmission along intrasoleus connective tissue may also be a significant source of nonuniform strain in the aponeurosis.


1993 ◽  
Vol 75 (4) ◽  
pp. 1767-1775 ◽  
Author(s):  
S. Schreck ◽  
K. J. Sullivan ◽  
C. M. Ho ◽  
H. K. Chang

The relationship between the pressure losses within the nasal airways and nasal geometry were studied in a 3:1 scale model. The geometry of the model was based on magnetic resonance images of the skull of a healthy male subject. Pressure measurements, flow visualization, and hot-wire anemometry studies were performed at flow rates that, in vivo, corresponded to flows of between 0.05 and 1.50 l/s. The influence of nasal congestion and the collapse of the external nares were examined by using modeling clay to simulate local constrictions in the cross section. A dimensionless analysis of the pressure losses within three sections of the airway revealed the influence of various anatomic dimensions on nasal resistance. The region of the exterior nose behaves as a contraction-expansion nozzle in which the pressure losses are a function of the smallest cross-sectional area. Losses in the interior nose resemble those associated with channel flow. The nasopharynx is modeled as a sharp bend in a circular duct. Good correspondence was found between the predicted and actual pressure losses in the model under conditions that stimulated local obstructions and congestion.


2019 ◽  
Vol 116 (31) ◽  
pp. 15686-15695 ◽  
Author(s):  
Damaris N. Lorenzo ◽  
Alexandra Badea ◽  
Ruobo Zhou ◽  
Peter J. Mohler ◽  
Xiaowei Zhuang ◽  
...  

βII-spectrin is the generally expressed member of the β-spectrin family of elongated polypeptides that form micrometer-scale networks associated with plasma membranes. We addressed in vivo functions of βII-spectrin in neurons by knockout of βII-spectrin in mouse neural progenitors. βII-spectrin deficiency caused severe defects in long-range axonal connectivity and axonal degeneration. βII-spectrin–null neurons exhibited reduced axon growth, loss of actin–spectrin-based periodic membrane skeleton, and impaired bidirectional axonal transport of synaptic cargo. We found that βII-spectrin associates with KIF3A, KIF5B, KIF1A, and dynactin, implicating spectrin in the coupling of motors and synaptic cargo. βII-spectrin required phosphoinositide lipid binding to promote axonal transport and restore axon growth. Knockout of ankyrin-B (AnkB), a βII-spectrin partner, primarily impaired retrograde organelle transport, while double knockout of βII-spectrin and AnkB nearly eliminated transport. Thus, βII-spectrin promotes both axon growth and axon stability through establishing the actin–spectrin-based membrane-associated periodic skeleton as well as enabling axonal transport of synaptic cargo.


Author(s):  
Sayan Mondal ◽  
Chun Yang ◽  
Joseph D. Petruccelli ◽  
Chun Yuan ◽  
Fei Liu ◽  
...  

It has been well-accepted that atherosclerosis initiation and progression correlate positively with low and oscillating flow wall shear stresses. However, this shear stress mechanism cannot fully explain why advanced plaques continue to grow under elevated flow shear stress conditions. Our previous investigations using 3D computational models with fluid-structure interactions (FSI) based on in vivo/ex vivo magnetic resonance images (MRI) of human carotid atherosclerotic plaques indicated that there is a negative correlation between advanced plaque wall thickness and structural maximum principal stress (Stress-P1) in the plaque and a positive correlation between plaque wall thickness and flow shear stress [3].


2020 ◽  
Vol 30 (8) ◽  
pp. 4496-4514 ◽  
Author(s):  
Fakhereh Movahedian Attar ◽  
Evgeniya Kirilina ◽  
Daniel Haenelt ◽  
Kerrin J Pine ◽  
Robert Trampel ◽  
...  

Abstract Short association fibers (U-fibers) connect proximal cortical areas and constitute the majority of white matter connections in the human brain. U-fibers play an important role in brain development, function, and pathology but are underrepresented in current descriptions of the human brain connectome, primarily due to methodological challenges in diffusion magnetic resonance imaging (dMRI) of these fibers. High spatial resolution and dedicated fiber and tractography models are required to reliably map the U-fibers. Moreover, limited quantitative knowledge of their geometry and distribution makes validation of U-fiber tractography challenging. Submillimeter resolution diffusion MRI—facilitated by a cutting-edge MRI scanner with 300 mT/m maximum gradient amplitude—was used to map U-fiber connectivity between primary and secondary visual cortical areas (V1 and V2, respectively) in vivo. V1 and V2 retinotopic maps were obtained using functional MRI at 7T. The mapped V1–V2 connectivity was retinotopically organized, demonstrating higher connectivity for retinotopically corresponding areas in V1 and V2 as expected. The results were highly reproducible, as demonstrated by repeated measurements in the same participants and by an independent replication group study. This study demonstrates a robust U-fiber connectivity mapping in vivo and is an important step toward construction of a more complete human brain connectome.


Sign in / Sign up

Export Citation Format

Share Document