Utilization of dye-loaded activated carbon as a potential alternative fuel source: a feasibility study through calorific and thermo-gravimetric analysis

2018 ◽  
Vol 25 (33) ◽  
pp. 33140-33152 ◽  
Author(s):  
Aswin Sriram ◽  
Ganapathiraman Swaminathan
2010 ◽  
Vol 6 (2) ◽  
pp. 1017-1023
Author(s):  
N.R.A. El-Mouhty ◽  
H. M. H. Gad ◽  
A. Y. El-Naggar

This study investigated the applicability of chemically (phosphoric acid) activated bagasse pith and date pits in the adsorption of water pollutants. The textural properties including porous parameters, monolayer equivalent surface area, total pore volumes, average pore radius, Methylene blue number and other physic-chemical characterization were investigated. The activated carbons were analyzed for moisture content, ash content. Ultimate analysis was done by using CHNS analyzer (Cairo University, Micro-analytical Center). To investigate the effect of phosphoric acid on the raw material, thermo gravimetric analysis (TGA) and differential thermo gravimetric (DTG) recordings were determined. The adsorption of heavy metals as pollutants, including Co, Sr, Cu, Cs, Pb, Cd, Ni, Fe, Zn, was studied in a batch experiments. Comparison of date pits activated carbon with commercial activated carbon was done, and the results indicated that using of prepared activated carbon for removal of Co, Sr, Cu, Cs, Pb, Cd, Ni,  Fe, Zn was  more effective than commercial activated carbon.


2008 ◽  
Vol 59 (7) ◽  
Author(s):  
Madalina Angelusiu ◽  
Maria Negoiu ◽  
Stefania-Felicia Barbuceanu ◽  
Tudor Rosu

The paper presents the synthesis and characterization of Cu(II), Co(II), Ni(II), Cd(II), Zn(II) and Hg(II) complexes with N1-[4-(4-bromo-phenylsulfonyl)-benzoyl]-N4-(4-methoxyphenyl)-thiosemicarbazide. The new compounds were characterized by IR, EPR, electronic spectroscopy, magnetic moments, thermo-gravimetric analysis and elemental analysis.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1728
Author(s):  
Peng Wen ◽  
Teng-Gen Hu ◽  
Yan Wen ◽  
Ke-Er Li ◽  
Wei-Peng Qiu ◽  
...  

An ethyl acetate extract from of Nervilia fordii (NFE) with considerable suppression activity on lipid peroxidation (LPO) was first obtained with total phenolic and flavonoid contents and anti-LPO activity (IC50) of 86.67 ± 2.5 mg GAE/g sample, 334.56 ± 4.7 mg RE/g extract and 0.307 mg/mL, respectively. In order to improve its stability and expand its application in antioxidant packaging, the nano-encapsulation of NFE within poly(vinyl alcohol) (PVA) and polyvinyl(pyrrolidone) (PVP) bio-composite film was then successfully developed using electrospinning. SEM analysis revealed that the NFE-loaded fibers exhibited similar morphology to the neat PVA/PVP fibers with a bead-free and smooth morphology. The encapsulation efficiency of NFE was higher than 90% and the encapsulated NFE still retained its antioxidant capacity. Fourier transform infrared spectroscopy (FTIR) and X-ray powder diffraction (XRD) analysis confirmed the successful encapsulation of NFE into fibers and their compatibility, and the thermal stability of which was also improved due to the intermolecular interaction demonstrated by thermo gravimetric analysis (TGA). The ability to preserve the fish oil’s oxidation and extend its shelf-life was also demonstrated, suggesting the obtained PVA/PVP/NFE fiber mat has the potential as a promising antioxidant food packaging material.


2011 ◽  
Vol 135-136 ◽  
pp. 1057-1059
Author(s):  
Heng Tao Zhou ◽  
Yong Wei

With a thermo gravimetric analysis apparatus combustion characteristics experiments of coal residue cornstalk and mixtures of them were done at 20 C/min heating rate. Then the combustion characteristic Parameters were obtained by above experiments. The c combustion activation energies were acquired by kinetics analysis. The results show those: the ignition characteristic and synthesis combustion characteristic of coal residue are bad. The ignition characteristic and synthesis combustion characteristic of cornstalk are better. The combustion characteristics of the mixture of coal residue and cornstalk are determined by mixing ratio. The ratio of cornstalk is more and the synthesis combustion characteristic is better.


2019 ◽  
Vol 41 (2) ◽  
pp. 240-240
Author(s):  
Nevin Cankaya Nevin Cankaya

In this study, some new chitosan materials were synthesized by the grafting of chitosan with the monomers such as 1-vinylimidazole (VIM), methacrylamide (MAm) and 2-acrylamido-2-methyl-1-propanesulfonic acid (AMPS). First of all, chitosan methacrylate was prepared by esterification of primary -OH group with methacryloyl chloride a 25.13% yield by mole. The monomers were grafted into chitosan methacrylate via free radical polymerization using 2,2and#39;-Azobisisobutyronitrile as an initiator in N,N-dimethylformamide. The graft copolymers were characterized by FT-IR spectra and elemental analysis. Thermal stabilities of the graft copolymers were determined by TGA (thermo gravimetric analysis) method. The synthesized chitosan methacrylate and its graft copolymers were tested for their antimicrobial activity against bacteria and yeast.


2017 ◽  
Vol 898 ◽  
pp. 2347-2353
Author(s):  
Ahmed Hossamaldin ◽  
Ping Liu ◽  
Ya Du ◽  
Xiao Ze Jiang ◽  
Bin Sun ◽  
...  

To prepare alpha zirconium phosphate (α-ZrP) with high interlayer distance, grafting ratio and thermal stability, 1,2-epoxypropane was used to modify α-ZrP as the epoxy group reacting with P-OH on the external and internal surfaces of α-ZrP to form P-O-C bonds after small amines pre-intercalation. Different characterization techniques were used, including X-ray Powder Diffraction (XRD), Fourier Transform Infrared Spectroscopy (FT-IR), Thermo-Gravimetric Analysis (TGA) and Carbon Mass Nuclear Magnetic Resonance (13C MAS NMR). The results of XRD confirmed the pre-intercalation of amino-propane and the intercalation of 1,2-epoxypropane, as the interlayer distance increased from 7.5 Å to 16.9 Å and 15.3 Å, respectively. FT-IR and 13C MAS NMR results confirmed the formation of P-O-C bonds between 1,2-epoxypropane and α-ZrP. TGA analysis showed that the grafting ratio of 1,2-epoxypropane was 19.44%.


Sign in / Sign up

Export Citation Format

Share Document