scholarly journals Determination of low environmental free cyanide concentrations in freshwaters

Author(s):  
Burkhard Knopf ◽  
Heinz Rüdel ◽  
Dirk Hansknecht ◽  
Thorsten Klawonn ◽  
Knut Kreuzer

AbstractCyanide compounds are naturally emitted into the environment in low levels by degradation processes or emitted from anthropogenic sources. In surface water, complex cyanide compounds as well as “free cyanide” are present. The latter term covers hydrogen cyanide and cyanide compounds which easily liberate hydrogen cyanide under slightly acidic conditions. Especially free cyanide may cause adverse effects in the environment. To exclude negative impacts on freshwater systems, in the context of the European Water Framework Directive (WFD), preventive regulatory activities for free cyanide are currently under discussion. However, established analytical methods for quantification of free cyanide only obtain limits of quantification (LOQs) in the range of 1 μg L−1. Thus, these methods are not sufficiently sensitive for a potential environmental quality standard (EQS) compliance monitoring at water concentrations below the current predicted no effect concentration (PNEC) level of free cyanide. In the present study, a standardized continuous flow analysis (CFA) method for quantification of low free cyanide concentrations was adapted by applying a special system which allows an ultra-sensitive photometric detection of a colored cyanide derivative. By this means, LOQs in a range of one magnitude below the PNEC are achievable. The method was validated according to ISO/IEC 17025 requirements. Free cyanide concentrations in tested surface water samples from a small river and a barrier lake with low anthropogenic influences were very low and clearly below the PNEC. The results prove that the adapted CFA method is suitable for the analysis of low concentration free cyanide in freshwaters and appropriate for a possible EQS compliance monitoring.

2018 ◽  
Vol 18 (44) ◽  
pp. 12-19
Author(s):  
Azzaya T ◽  
Burmaa G ◽  
S Alen ◽  
Narangarav T ◽  
Nyamdelger Sh

Distribution of arsenic (As) and its compound and related toxicology are serious concerns nowadays. Gold mining activity is one of the anthropogenic sources of environmental contamination regarding As and other heavy metals. In Mongolia, the most productive gold mining sites are placed in the Kharaa river basin. A hundred water samples were collected from river, spring and deep wells in this river basin. Along with total As and its species-As(III) and As(V), examination of concentration levels of other key parameters, 21 heavy metals with pH, total hardness, electric conductivity, anion and cations, was also carried out. In respect to the permissible limit formulated by the Mongolian National Drinking water quality standard (MNS 0900:2005, As10 µg/l), the present study showed that most of samples were found no contamination. In Kharaa river basin, an average concentration of total As in surface water was 4.04 µg/l with wide range in 0.07−30.30 µg/l whereas it was 2.24 µg/l in groundwater. As analysis in surface water in licensed area of Gatsuurt gold mining showed a mean concentration with 24.90 µg/l presenting higher value than that of value in river basin by 6 orders of magnitude and it was 2 times higher than permissible level as well. In Boroo river nearby Boroo gold mining area, As concentration in water was ranged in 6.05−6.25 µg/l. Ammonia pollution may have present at estuary of Zuunmod river in Mandal sum with above the permissible level described in national water quality standard. Geological formation of the rocks and minerals affected to change of heavy metal concentration, especially As and uranium (U) at spring water nearby Gatsuurt-Boroo improved road.


2012 ◽  
Vol 66 (5) ◽  
pp. 1103-1109 ◽  
Author(s):  
Zenghu Qin ◽  
Mingwei Tong ◽  
Lin Kun

Due to the surface water in the upper reaches of Yangtze River in China containing large amounts of silt and algae, high content of microorganisms and suspended solids, the water in Yangtze River cannot be used for cooling a heat pump directly. In this paper, the possibility of using Yangtze River, which goes through Chongqing, a city in southwest China, as a heat source–sink was investigated. Water temperature and quality of the Yangtze River in the Chongqing area were analyzed and the performance of water source heat pump units in different sediment concentrations, turbidity and algae material conditions were tested experimentally, and the water quality standards, in particular surface water conditions, in the Yangtze River region that adapt to energy-efficient heat pumps were also proposed. The experimental results show that the coefficient of performance heat pump falls by 3.73% to the greatest extent, and the fouling resistance of cooling water in the heat exchanger increases up to 25.6% in different water conditions. When the sediment concentration and the turbidity in the river water are no more than 100 g/m3 and 50 NTU respectively, the performance of the heat pump is better, which can be used as a suitable river water quality standard for river water source heat pumps.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Yuhuan Cui ◽  
Jie Wang ◽  
Shuang Hao

AbstractNitrate (NO3−) pollution is a serious global problem, and the quantitative analysis of its sources contributions is essential for devising effective water-related environmental-protection policies. The Shengjin Lake basin, located in the middle to lower reaches of the Yangtze River in China was selected as the research area in our study. We first grouped 29 surface water samples and 33 groundwater samples using cluster analysis, and then analyzed potential nitrate sources for each dataset of δ15N–NO3− and δ18O–NO3− isotope values by applying a Bayesian isotope-mixing model. Our results show that the nitrogen pollution in the surface-ground water in the study area seriously exceeded to class V of the Environmental Quality Standard of Surface Water of China. The NO3− in surface water from the mid-upper reaches of the drainage basin mainly originates from soil nitrogen (SN) and chemical fertilizer (CF), with contribution rates of 48% and 32%, respectively, and the NO3− in downstream areas mainly originates from CF and manure and sewage (MS), with contribution rates of 48% and 33%, respectively. For the groundwater samples, NO3− mainly originates from MS, CF, and SN in the mid-upper reaches of the drainage basin and the northside of Dadukou near the Yangtze River, with contribution rates of 34%, 31%, and 29%, respectively, whereas NO3− in the lower reaches and the middle part of Dadukou mainly originates from MS, with a contribution rate of 83%. The nitrogen conversion of surface water in lakes and in the mid-upper reaches is mainly affected by water mixing, while the groundwater and surface water in the lower plains are mainly affected by denitrification. The method proposed in this study can expand the ideas for tracking nitrate pollution in areas with complex terrain, and the relevant conclusions can provide a theoretical basis for surface and groundwater pollution control in the hilly basin of Yangtze River.


Author(s):  
Putri Nilakandi Perdanawati Pitoyo ◽  
I Wayan Arthana ◽  
I Made Sudarma

Bali tourism development can lead to positive and negative impacts that threatening environmental sustainability. This research evaluates the hotel performance of the waste management that includes management of waste water, emission, hazardous, and solid waste by hotel that participate at PROPER and non PROPER. Research using qualitative descriptive method. Not all of non PROPER doing test on waste water quality, chimney emissions quality, an inventory of hazardous waste and solid waste sorting. Wastewater discharge of PROPER hotels ranged from 290.9 to 571.8 m3/day and non PROPER ranged from 8.4 to 98.1 m3/day with NH3 parameter values that exceed the quality standards. The quality of chimney emissions were still below the quality standard. The volume of the hazardous waste of PROPER hotels ranged from 66.1 to 181.9 kg/month and non PROPER ranged from 5.003 to 103.42 kg/month. Hazardous waste from the PROPER hotel which has been stored in the TPS hazardous waste. The volume of the solid waste of PROPER hotel ranged from 342.34 to 684.54 kg/day and non PROPER ranged from 4.83 to 181.51 kg/day. The PROPER and non PROPER hotel not sort the solid waste. The hotel performance in term of wastewater management, emission, hazardous, and solid waste is better at the PROPER hotel compared to non PROPER participants.


Atmosphere ◽  
2022 ◽  
Vol 13 (1) ◽  
pp. 128
Author(s):  
Zhonggen Li ◽  
Yiming Huang ◽  
Xinyu Li ◽  
Guan Wang ◽  
Qingfeng Wang ◽  
...  

Atmospheric emission of heavy metals from different anthropogenic sources is a great concern to human beings due to their toxicities. In order to disclose the emission levels and the distribution patterns of zinc (Zn) in the modern cement industry with respect to its low boiling point (~900 °C) comparing to the high-temperature (1450 °C) clinker production process, solid samples representing the input and output flow of Zn during the entire production process in two preheater–precalciner cement plants (CPs) were collected and analyzed. For the first time, it was found that the behaviour of Zn inside different precalciner CPs was similar despite a huge difference in the Zn inputs to the CPs; namely, almost all the Zn input was output in clinker, which was then mixed with different additives and retarder to make cement products. The high-temperature clinkerisation process would incorporate Zn into the aluminosilicate of clinker. As a result, there was no enrichment of Zn during clinker production and the atmospheric emission factor was relatively low at 0.002%, or 1.28–9.39 mg Zn·t−1 clinker. Our result for the atmospheric Zn emissions from CPs was much lower than most previous reports, implying the CPs were not a crucial Zn emission source. However, the higher load of Zn in some raw/alternative materials—like nonferrous smelting slag with a Zn content of ~2%—could greatly increase the content of Zn in clinker and cement products. Therefore, further investigation on the environmental stability of Zn in such Zn-laden cement and concrete should be carried out.


2020 ◽  
Vol 20 (4) ◽  
pp. 1178-1188 ◽  
Author(s):  
Lihong Meng ◽  
Dewei Yang ◽  
Zhiyong Ding ◽  
Yuandong Wang ◽  
Weijing Ma

Abstract Intensive and extensive water consumption and its potential negative impacts are increasingly challenging regional development in the Beijing-Tianjin-Hebei region (BTH). It is necessary to enhance the metabolic efficiency of both physical and virtual water, and the latter is often neglected in research and practical fields. The material flow analysis method was employed in evaluating spatiotemporal variations of the Water Resources Metabolism Efficiency (WME) for exploring the inherent driving mechanisms in the BTH region. Results indicate that the WME increased obviously and differently in Beijing, Tianjin and Hebei, as well as in the whole BTH region from 1990 to 2015. The changes in WME depend significantly on the improvement in society and economics. Water production and water consumption are crucial for the integrated metabolic efficiency of physical and virtual water, followed by other influencing factors, i.e., freshwater recycling use ratio (Rfw), total retail amount of commodities of unit water use (Cw), and industrial output value per cubic metre of water resources (Uio). The results could provide alternative references for efficient and effective utilization of water resources within and beyond similar cities.


2010 ◽  
Vol 113-116 ◽  
pp. 923-927
Author(s):  
Shuai Ma ◽  
Si Yu Zeng

An environmental assessment system was established to analyze and evaluate the pollution status of surface water and sediments of Bohai Rim Area. Considering the requirements of evaluation item completeness and criteria strictness, this paper selected the Multimedia Environmental Goals, Classification Index of Soil Fertility, Organic Index Evaluation Standard and Soil Environmental Quality Standard as the evaluation standards. The results show that for each media, benzo(a)anthracene, benzo(a)pyrene and dibenzo(a,h)anthracene are the major pollutants among PAHs. And for the sediments, the organic matter and total nitrogen reach the level of fertile pollution in the area. The specific organic compounds and heavy metals (including As) are both concentrated in Tianjin, in accordance with the development level of industry of the area.


Sign in / Sign up

Export Citation Format

Share Document