Spatiotemporal variations of water resources metabolism efficiency in the Beijing-Tianjin-Hebei region, China

2020 ◽  
Vol 20 (4) ◽  
pp. 1178-1188 ◽  
Author(s):  
Lihong Meng ◽  
Dewei Yang ◽  
Zhiyong Ding ◽  
Yuandong Wang ◽  
Weijing Ma

Abstract Intensive and extensive water consumption and its potential negative impacts are increasingly challenging regional development in the Beijing-Tianjin-Hebei region (BTH). It is necessary to enhance the metabolic efficiency of both physical and virtual water, and the latter is often neglected in research and practical fields. The material flow analysis method was employed in evaluating spatiotemporal variations of the Water Resources Metabolism Efficiency (WME) for exploring the inherent driving mechanisms in the BTH region. Results indicate that the WME increased obviously and differently in Beijing, Tianjin and Hebei, as well as in the whole BTH region from 1990 to 2015. The changes in WME depend significantly on the improvement in society and economics. Water production and water consumption are crucial for the integrated metabolic efficiency of physical and virtual water, followed by other influencing factors, i.e., freshwater recycling use ratio (Rfw), total retail amount of commodities of unit water use (Cw), and industrial output value per cubic metre of water resources (Uio). The results could provide alternative references for efficient and effective utilization of water resources within and beyond similar cities.

2013 ◽  
Vol 807-809 ◽  
pp. 1087-1092 ◽  
Author(s):  
Nida Chaimoon

Rainwater harvesting from roof is considered as valuable water resources. Material Flow Analysis (MFA) of water in Mahasarakham University (Khamriang Campus) shows that rainwater harvesting from roof can reduce water supply production by 7% and save more than 200,000 Bt/year for water treatment cost. The sensitivity analysis suggests that by 5% water supply conservation and 20% additional rainwater harvesting, MSU could have enough water resources. The rainwater is suitable to be substituted water for gardening due to the convenience to assemble an above ground storage tank or a pond to store harvested rainwater from roof. The current practice of rainwater is collected and discharged into drainage system and treated in wastewater treatment plant. Utilisation of rainwater harvested could reduce wastewater amount that must be treated by 9%. Rainwater harvesting and reuse should be promoted in campus in order to encourage sustainable living and water conservation policy.


2020 ◽  
Author(s):  
Meng Li ◽  
La Zhuo ◽  
Pute Wu

<p>Water scarcity is a significant risk for meeting increasing food demand around the world. The importance of identifying the driving forces behind water consumption in agriculture and relative virtual water (VW) flows has been widely reported in order to provide practical advice for sustainable agricultural water resource management. However, the regional differences in the driving forces behind either water consumption or VW flows were largely ignored. To fill the crucial gap, taking nine major crops grown in the Beijing-Tianjin-Hebei (BTH) region in China over 2000-2013 as the study case, we investigate the regional differences in socio-economic driving forces on both the estimated water footprint (WF) in crop production and relative inter-city VW flows for each crop per year. Results show that although there is little change in total WFs in crop production (~43.3 billion m<sup>3</sup>/y on annual average), the WF per unit mass of crop decreased and the crop structure in the total WFs changed greatly. The BTH region was a VW importer with net VW import of 11.7 billion m<sup>3</sup>/y by 2013. The per capita GDP was the main positive driver of both total WFs of crop production and relative VW flows. Whereas the economic productivity and consumption ability were inhibiting factors for the WFs and VW flows, respectively. The levels of total crop WFs in agricultural cities were more sensitive to the effects of the main driving factors. The intensity of driving factors behind the inter-regional crop-related VW flows was shown to be directly related to the regional role as an importer or exporter. The current analysis suggests to develop characteristic agriculture considering the local role and regional differences in terms of water consumption and relative inter-regional VW flows, aiming for a balance between water sustainability, food security and economic developments.</p>


2021 ◽  
pp. 0734242X2110067
Author(s):  
Jean-Marc Brignon

Reusing materials is an attractive option for circular economy and can also reduce emissions of greenhouse gases and pollutants. However, recycling raises questions regarding the potential risks to human health or the environment when hazardous legacy chemical additives of materials are also recycled, instead of the recent and less hazardous additives of virgin materials. To address this trade-off, this study developed a model to calculate the total external cost of material supply, considering the health and environmental impacts of all industrial steps (e.g. virgin material production, incineration, and recycling), and the health effects of recycling chemicals present in the material. The model is coupling material flow analysis, life-cycle analysis, and environmental economics to compare different recycling policies. It is applied for all illustrative purposes to soft PVC and DEHP in France. Results show that recycling of materials is in the long-term positive despite the prolongation of the presence of hazardous additives in materials. The time when the recurring environmental benefits of recycling offset the negative impacts on human health of recycling the additives is very sensitive to the health impact of additives. This approach can improve the harmonization between recycling and circular economy policies, and as a framework to confirm the relevance and size treatments to remove additives from materials during recycling.


2020 ◽  
Vol 13 (1) ◽  
pp. 247
Author(s):  
Valdonė Šuškevičė ◽  
Jolita Kruopienė

Festivals generate huge amounts of waste during a short period of time, usually in three to four days. Single-use packaging is one of the dominant waste streams at the festivals. In order to minimize single-use plastic packaging waste generation and negative impacts on the environment, outdoor festivals apply alternative reusable cup systems and strategies. However, little studies have been made on how different reusable beverage cup reuse models can affect material circularity within certain festivals, and how it contributes to cup damage and loss. This article presents the results of a pilot study of different reusable cup reuse models within seven Lithuanian summer outdoor festivals. Three different models were applied and tested: A—only reusable cups, non-refundable model; B—only reusable cups, with deposit-refund; C—a mixed system of reusable cups with deposit-refund and of single-use cups. Material flow analysis (MFA) was performed, and the Materials Circularity Indicator (MCI), developed by Ellen MacArthur Foundation, was calculated to study the applied models. According to the findings, refund models (B, C models) have lower rates of damaged and lost cups compared to non-refundable reusable cup reuse model (A model). This paper shows that different reuse models provide different damage, loss and return rates of reusable cups. The data presented can aid decision-makers who need to choose a reuse model for a certain event.


2013 ◽  
Vol 14 (1) ◽  
pp. 173-180
Author(s):  
T. Terekhanova ◽  
O. Berezina ◽  
J. Tränckner ◽  
S. Dvinskih ◽  
P. Krebs

In the last 5 years Russia developed Schemes of Integrated Use and Protection of Water Objects (SKIOVO) aiming at remediating and maintaining water resources quality. The main limitation of the schemes is seen in their large spatial scale, which is determined by the available environmental monitoring data. The meso-scale catchments are usually ungauged, which does not allow monitoring and management of water quality on the respective scale and thus they are not included in the schemes. This can have severe consequences, if the catchment is used for drinking water supply (DWS) from surface waters. This is shown in the example of the Nytva river basin, where raw water is extracted from the eutrophic Nytva reservoir for DWS. The solution of the problem is seen in the application of structured water quality mitigation measures, included in the basin management plan. A method to develop such a plan is presented here. The preliminary results of system screening (identification of problems and drivers) and material flow analysis (MFA) have shown that the reservoir is hypertrophic and the probable drivers are emissions from cattle breading, point sources and erosion from arable land. Apart from first measurements, soft factors and the problem of eutrophication identification are discussed, pointing out the need for further studies with regard to eutrophication in the reservoir and the analysis of stakeholders and material flow.


Author(s):  
Ramiz Tagirov ◽  
◽  
Maya Zeynalova ◽  

The article examines the problem of fresh water, since in terms of water supply from its own resources per capita and per 1 km2, the republic is 8 times behind Georgia, 2 times behind Armenia. Significant water consumption in Azerbaijan is caused by its arid territory with a predominance of active temperature and a lack of precipitation, which leads to intensive irrigation of crops. At the same time, artificial irrigation is used on 70% of the cultivated land.


2021 ◽  
Vol 13 (14) ◽  
pp. 7939
Author(s):  
Sohani Vihanga Withanage ◽  
Komal Habib

The unprecedented technological development and economic growth over the past two decades has resulted in streams of rapidly growing electronic waste (e-waste) around the world. As the potential source of secondary raw materials including precious and critical materials, e-waste has recently gained significant attention across the board, ranging from governments and industry, to academia and civil society organizations. This paper aims to provide a comprehensive review of the last decade of e-waste literature followed by an in-depth analysis of the application of material flow analysis (MFA) and life cycle assessment (LCA), i.e., two less commonly used strategic tools to guide the relevant stakeholders in efficient management of e-waste. Through a keyword search on two main online search databases, Scopus and Web of Science, 1835 peer-reviewed publications were selected and subjected to a bibliographic network analysis to identify and visualize major research themes across the selected literature. The selected 1835 studies were classified into ten different categories based on research area, such as environmental and human health impacts, recycling and recovery technologies, associated social aspects, etc. With this selected literature in mind, the review process revealed the two least explored research areas over the past decade: MFA and LCA with 33 and 31 studies, respectively. A further in-depth analysis was conducted for these two areas regarding their application to various systems with numerous scopes and different stages of e-waste life cycle. The study provides a detailed discussion regarding their applicability, and highlights challenges and opportunities for further research.


2021 ◽  
Vol 13 (14) ◽  
pp. 7589
Author(s):  
Yang Yang ◽  
Shiwei Liu ◽  
Cunde Xiao ◽  
Cuiyang Feng ◽  
Chenyu Li

In Tarim River Basin (TRB), the retreat of glacier and snow cover reduction due to climate warming threatens the regional economy of downstream basins that critically depends on meltwater. However, the quantitative evaluation of its impact on multiple sectors of the socioeconomic system is incomplete. Based on compiled regional input–output table of the year 2012, this study developed a method to analyze the relationships between economic activities and related meltwater withdrawal, as well as sectoral transfer. The results show that the direct meltwater withdrawal intensity (DMWI) of agriculture was much higher than other sectors, reaching 2348.02 m3/10,000 CNY. Except for A01 (agriculture) and A02 (mining and washing of coal), the embodied meltwater withdrawal (EMW) driven by the final demand of other sectors was greater than direct meltwater withdrawal, and all sectors required inflows of virtual water (72.45 × 108 m3, accounting for 29% of total supply from cryospheric water resources) for their production processes in 2012. For sectors with high DMWI, improving water-use efficiency is an effective way to reduce water withdrawal. To some extent, the unbalanced supply of cryospheric water resources due to geographical segregation can be regulated by virtual water flows from water-saving to water-intensive sectors. Such decisions can affect the balance between socioeconomic development and environment conservation for long-term sustainability.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Fatemeh Karandish ◽  
Hamideh Nouri ◽  
Marcela Brugnach

AbstractEnding hunger and ensuring food security are among targets of 2030’s SDGs. While food trade and the embedded (virtual) water (VW) may improve food availability and accessibility for more people all year round, the sustainability and efficiency of food and VW trade needs to be revisited. In this research, we assess the sustainability and efficiency of food and VW trades under two food security scenarios for Iran, a country suffering from an escalating water crisis. These scenarios are (1) Individual Crop Food Security (ICFS), which restricts calorie fulfillment from individual crops and (2) Crop Category Food Security (CCFS), which promotes “eating local” by suggesting food substitution within the crop category. To this end, we simulate the water footprint and VW trades of 27 major crops, within 8 crop categories, in 30 provinces of Iran (2005–2015). We investigate the impacts of these two scenarios on (a) provincial food security (FSp) and exports; (b) sustainable and efficient blue water consumption, and (c) blue VW export. We then test the correlation between agro-economic and socio-environmental indicators and provincial food security. Our results show that most provinces were threatened by unsustainable and inefficient blue water consumption for crop production, particularly in the summertime. This water mismanagement results in 14.41 and 8.45 billion m3 y−1 unsustainable and inefficient blue VW exports under ICFS. “Eating local” improves the FSp value by up to 210% which lessens the unsustainable and inefficient blue VW export from hotspots. As illustrated in the graphical abstract, the FSp value strongly correlates with different agro-economic and socio-environmental indicators, but in different ways. Our findings promote “eating local” besides improving agro-economic and socio-environmental conditions to take transformative steps toward eradicating food insecurity not only in Iran but also in other countries facing water limitations.


Sign in / Sign up

Export Citation Format

Share Document