Influence of cover thickness in structural frames exposed to fire and service loads

Author(s):  
Vishal Murugan ◽  
Satyanarayanan Kachabeswara Srinivasan
Geosciences ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 35
Author(s):  
Luca Schilirò ◽  
José Cepeda ◽  
Graziella Devoli ◽  
Luca Piciullo

In Norway, shallow landslides are generally triggered by intense rainfall and/or snowmelt events. However, the interaction of hydrometeorological processes (e.g., precipitation and snowmelt) acting at different time scales, and the local variations of the terrain conditions (e.g., thickness of the surficial cover) are complex and often unknown. With the aim of better defining the triggering conditions of shallow landslides at a regional scale we used the physically based model TRIGRS (Transient Rainfall Infiltration and Grid-based Regional Slope stability) in an area located in upper Gudbrandsdalen valley in South-Eastern Norway. We performed numerical simulations to reconstruct two scenarios that triggered many landslides in the study area on 10 June 2011 and 22 May 2013. A large part of the work was dedicated to the parameterization of the numerical model. The initial soil-hydraulic conditions and the spatial variation of the surficial cover thickness have been evaluated applying different methods. To fully evaluate the accuracy of the model, ROC (Receiver Operating Characteristic) curves have been obtained comparing the safety factor maps with the source areas in the two periods of analysis. The results of the numerical simulations show the high susceptibility of the study area to the occurrence of shallow landslides and emphasize the importance of a proper model calibration for improving the reliability.


Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3975
Author(s):  
Magdalena German ◽  
Jerzy Pamin

Reinforced concrete structures can be strongly damaged by chloride corrosion of reinforcement. Rust accumulated around rebars involves a volumetric expansion, causing cracking of the surrounding concrete. To simulate the corrosion progress, the initiation phase of the corrosion process is first examined, taking into account the phenomena of oxygen and chloride transport as well as the corrosion current flow. This makes it possible to estimate the mass of produced rust, whereby a corrosion level is defined. A combination of three numerical methods is used to solve the coupled problem. The example object of the research is a beam cross-section with four reinforcement bars. The proposed methodology allows one to predict evolving chloride concentration and time to reinforcement depassivation, depending on the reinforcement position and on the location of a point on the bar surface. Moreover, the dependence of the corrosion initiation time on the chloride diffusion coefficient, chloride threshold, and reinforcement cover thickness is examined.


2017 ◽  
Vol 140 ◽  
pp. 257-273 ◽  
Author(s):  
Pongsak Wiwatrojanagul ◽  
Raktipong Sahamitmongkol ◽  
Somnuk Tangtermsirikul ◽  
Nirattaya Khamsemanan

1999 ◽  
Vol 89 (1) ◽  
pp. 250-259
Author(s):  
Malte Ibs-von Seht ◽  
Jürgen Wohlenberg

Abstract The observations about the behavior of microtremor spectra presented here show that noise measurements can be used as a powerful tool to determine the thickness of soft cover layers. The most suitable method for this determination is Nakamura's technique, which is the ratio of the horizontal-component noise spectrum and that of the vertical component (H/V spectrum). The frequency of the main peak in these spectral ratios correlates well with the sediment thickness at the site. Using an extensive database of microtremor measurements carried out in the western Lower Rhine Embayment (Germany), it was possible to show that this correlation is clearly valid for a wide range of thickness, namely, from tens of meters to more than 1000 m. A simple formula was derived that, for the sediments to be found in the area investigated, directly calculates the cover thickness from the frequency of the main peak in the H/V spectrum. A comparison with calculated resonant frequencies suggests the relation derived from the noise measurements depending on the velocity depth function of the shear wave. Classical spectral ratios are shown to be strongly influenced by the noise level and are therefore less reliable in determining the resonant frequency of the subsoil. The practical relevance of the investigation is illustrated by means of cross sections, constructed from results of the microtremor analyses, which provide a convincing image of the surficial structure of the areas investigated.


2012 ◽  
Vol 204-208 ◽  
pp. 3194-3200
Author(s):  
Xin Gang Zhou ◽  
Hui Xia

Finite difference method (FDM) is used to numerical stimulation analysis for chloride diffusion in concrete. By numerical computing, comparison of chloride content profile in different concrete members with different sectional shapes is made. Calculation and comparison show the chloride content prolife in rectangular and circular section has obvious difference. If the side length of rectangular section is equal to the diameter of circular section, as well as the material property and environment, the chloride content in rectangular section is higher than that in that in circular section. In the calculation example, the chloride content at the depth of reinforcement of circular section is about 50-60% that of rectangular section. This tendency is more remarkable in less section dimension, as well as less cover thickness. With the increasing of section, the ratio of difference becomes to be less until to a constant value. In durability design and service life prediction of concrete structures, the section shape and dimension influence should be taken to consideration.


Sign in / Sign up

Export Citation Format

Share Document