scholarly journals Yet Another Intelligent Code-Generating System: A Flexible and Low-Cost Solution

2018 ◽  
Vol 33 (5) ◽  
pp. 940-965 ◽  
Author(s):  
João Fabrício Filho ◽  
Luis Gustavo Araujo Rodriguez ◽  
Anderson Faustino da Silva
Keyword(s):  
Low Cost ◽  
System A ◽  
Molecules ◽  
2021 ◽  
Vol 26 (11) ◽  
pp. 3365
Author(s):  
Ben-Zhan Zhu ◽  
Miao Tang ◽  
Chun-Hua Huang ◽  
Li Mao

Polyhaloaromatic compounds (XAr) are ubiquitous and recalcitrant in the environment. They are potentially carcinogenic to organisms and may induce serious risks to the ecosystem, raising increasing public concern. Therefore, it is important to detect and quantify these ubiquitous XAr in the environment, and to monitor their degradation kinetics during the treatment of these recalcitrant pollutants. We have previously found that unprecedented intrinsic chemiluminescence (CL) can be produced by a haloquinones/H2O2 system, a newly-found ●OH-generating system different from the classic Fenton system. Recently, we found that the degradation of priority pollutant pentachlorophenol by the classic Fe(II)-Fenton system could produce intrinsic CL, which was mainly dependent on the generation of chloroquinone intermediates. Analogous effects were observed for all nineteen chlorophenols, other halophenols and several classes of XAr, and a novel, rapid and sensitive CL-based analytical method was developed to detect these XAr and monitor their degradation kinetics. Interestingly, for those XAr with halohydroxyl quinoid structure, a Co(II)-mediated Fenton-like system could induce a stronger CL emission and higher degradation, probably due to site-specific generation of highly-effective ●OH. These findings may have broad chemical and environmental implications for future studies, which would be helpful for developing new analytical methods and technologies to investigate those ubiquitous XAr.


1979 ◽  
Vol 149 (1) ◽  
pp. 27-39 ◽  
Author(s):  
H Rosen ◽  
S J Klebanoff

The acetaldehyde-xanthine oxidase system in the presence and absence of myeloperoxidase (MPO) and chloride has been employed as a model of the oxygen-dependent antimicrobial systems of the PMN. The unsupplemented xanthine oxidase system was bactericidal at relatively high acetaldehyde concentrations. The bactericidal activity was inhibited by superoxide dismutase (SOD), catalase, the hydroxyl radical (OH.) scavengers, mannitol and benzoate, the singlet oxygen (1O2) quenchers, azide, histidine, and 1,4-diazabicyclo[2,2,2]octane (DABCO) and by the purines, xanthine, hypoxanthine, and uric acid. The latter effect may account for the relatively weak bactericidal activity of the xanthine oxidase system when purines are employed as substrate. A white, carotenoid-negative mutant strain of Sarcina lutea was more susceptible to the acetaldehyde-xanthine oxidase system than was the yellow, carotenoid-positive parent strain. Carotenoid pigments are potent 1O2 quenchers. The xanthine oxidase system catalyzes the conversion of 2,5-diphenylfuran to cis-dibenzoylethylene, a reaction which can occur by a 1O2 mechanism. This conversion is inhibited by SOD, catalase, azide, histidine, DABCO, xanthine, hypoxanthine, and uric acid but is only slightly inhibited by mannitol and benzoate. The addition of MPO and chloride to the acetaldehyde-xanthine oxidase system greatly increases bactericidal activity; the minimal effective acetaldehyde concentration is decreased 100-fold and the rate and extent of bacterial killing is increased. The bactericidal activity of the MPO-supplemented system is inhibited by catalase, benzoate, azide, DABCO, and histidine but not by SOD or mannitol. Thus, the acetaldehyde-xanthine oxidase system which like phagocytosing PMNs generates superoxide (O.2-) and hydrogen peroxide, is bactericidal both in the presence and absence of MPO and chloride. The MPO-supplemented system is considerably more potent; however, when MPO is absent, bactericidal activity is observed which may be mediated by the interaction of H2O2 and O.2- to form OH. and 1O2.


2012 ◽  
Vol 433-440 ◽  
pp. 5611-5615
Author(s):  
Jian Sheng Hu

Aimed at the problem of the embedded multi-channel video acquisition and display system, a new one based on FPGA is put forward. The configuration of the system is given. The principle and key issue is analyzed. Using of the state shift mechanism, t the controlling time sequence signals of TFT-LCD are produced; The synchronization among multi-channel video acquisition is realized by using time-division multiplexing technology; The problem of conflict between reading and writing frame cache is solved through the two SRAM switch; The frames composition technology is applied to accomplish the change from interlaced scanning to progressive scanning. The result of project application shows the virtues of system, such as good effect of acquisition and display, low cost and low power consumption.


2014 ◽  
Vol 7 (7) ◽  
pp. 1318-1324
Author(s):  
Negin Karimi Hosseini ◽  
Jan Nordin ◽  
Mitra Mahdiani ◽  
Samira Sadrzadeh Rafiei

2014 ◽  
Vol 12 (1) ◽  
pp. 126-130
Author(s):  
Edina Rusen ◽  
Aurel Diacon ◽  
Alexandra Mocanu

AbstractThis paper presents the use of soap-free emulsion terpolymerization to obtainphotonic crystals (PCs). Monodisperse latexes resulted from the polymerization of styrene (ST) with 2-hydroxyethyl methacrylate (HEMA) and acrylic acid (AA) at different compositions defined as system A, B and C respectively. The water solubility of the macroradicals determined different nucleation mechanisms in all three cases. The micellar nucleation mechanism was more predominant for generating system A, whereas the homogeneous nucleation was specific for system C. For system B, both nucleation mechanisms werepossible with the same probability. The latexes and the resulted PCs were characterized by optical microscopy (OM), dynamic light scattering (DLS), gel permeation chromatography (GPC) and UV-VIS spectroscopy.


2017 ◽  
Vol 12 (7) ◽  
pp. 864-871
Author(s):  
Homero Gustavo Ferrari ◽  
Leonardo H.D. Messias ◽  
Ivan G.M. Reis ◽  
Claudio A. Gobatto ◽  
Filipe A.B. Sousa ◽  
...  

Background:Among other aspects, aerobic fitness is indispensable for performance in slalom canoe.Purpose:To propose the maximal-lactate steady-state (MLSS) and critical-force (CF) tests using a tethered canoe system as new strategies for aerobic evaluation in elite slalom kayakers. In addition, the relationship between the aerobic parameters from these tests and the kayakers’ performances was studied.Methods:Twelve male elite slalom kayakers from the Brazilian national team participated in this study. All tests were conducted using a tethered canoe system to obtain the force records. The CF test was applied on 4 d and analyzed by hyperbolic (CFhyper) and linear (CFlin) mathematical models. The MLSS intensity (MLSSint) was obtained by three 30-min continuous tests. The time of a simulated race was considered the performance index.Results:No difference (P < .05) between CFhyper (65.9 ± 1.6 N) and MLSSint (60.3 ± 2.5 N) was observed; however, CFlin (71.1 ± 1.7 N) was higher than MLSSint. An inverse and significant correlation was obtained between MLSSint and performance (r = –.67, P < .05).Conclusion:In summary, MLSS and CF tests on a tethered canoe system may be used for aerobic assessment of elite slalom kayakers. In addition, CFhyper may be used as an alternative low-cost and noninvasive method to estimate MLSSint, which is related with slalom kayakers’ performance.


2018 ◽  
Vol 43 ◽  
pp. 82-89 ◽  
Author(s):  
Arnaldo G. Leal-Junior ◽  
Laura Vargas-Valencia ◽  
Wilian M. dos Santos ◽  
Felipe B.A. Schneider ◽  
Adriano A.G. Siqueira ◽  
...  

Author(s):  
Brett A. Wujek ◽  
John E. Renaud ◽  
Stephen M. Batill ◽  
Jay B. Brockman

Abstract This paper reviews recent implementation advances and modifications in the continued development of a Concurrent Subspace Optimization (CSSO) algorithm for Multidisciplinary Design Optimization (MDO). The CSSO-MDO algorithm implemented in this research incorporates a Coordination Procedure of System Approximation (CP-SA) for design updates. Implementation studies detail the use of a new discipline based decomposition strategy which provides for design variable sharing across discipline design regimes (i.e., subspaces). The algorithm is implemented in a distributed computing environment, providing for concurrent discipline design. Implementation studies introduce a new multidisciplinary design test problem, the optimal design of a high performance, low cost structural system. A graphical user interface is developed which provides for menu driven execution and results display; this new programming environment highlights the modularity of the algorithm. Significant time savings are observed when using distributed computing for concurrent design across disciplines. The use of design variable sharing across disciplines does not introduce any difficulties in implementation as the design update in the CSSO-MDO algorithm is generated in the coordination procedure of system approximation (CP-SA).


Author(s):  
Pallavi Thakkur ◽  
Smita Shandilya

Self-Excited Induction Generator (SEIG) offers many advantages such as low cost, simplicity, robust construction, self-protection against faults and maintenance free in today's renewable energy industry. However, the SEIG demands an external supply of reactive power to maintain the constant terminal voltage under the varying loading conditions, which limits the application of SEIG as a standalone power generator. The regulation of speed and voltage does not result in a satisfactory improvement although several studies have been emphasized on this topic in the past. To improve the performance of the SEIG system in isolated areas and to regulate the terminal voltage STATic COMpensator (STATCOM) has been modelled and developed in this dissertation. The STATCOM consists of AC inductors, a DC bus capacitor and solid-state self-commutating devices. The ratings of these components are quite important for designing and controlling of STATCOM to maintain the constant terminal voltage. The proposed generating system is modelled and simulated in MATLAB along with Simulink and sim power system block set toolboxes. The simulated results are presented to demonstrate the capability of an isolated power generating system for feeding three-phase resistive loads.


Sign in / Sign up

Export Citation Format

Share Document