Lupinifolin from Derris reticulata possesses bactericidal activity on Staphylococcus aureus by disrupting bacterial cell membrane

2016 ◽  
Vol 71 (2) ◽  
pp. 357-366 ◽  
Author(s):  
Kamol Yusook ◽  
Oratai Weeranantanapan ◽  
Yanling Hua ◽  
Pakarang Kumkrai ◽  
Nuannoi Chudapongse
2005 ◽  
Vol 49 (3) ◽  
pp. 1127-1134 ◽  
Author(s):  
Deborah L. Higgins ◽  
Ray Chang ◽  
Dmitri V. Debabov ◽  
Joey Leung ◽  
Terry Wu ◽  
...  

ABSTRACTThe emergence and spread of multidrug-resistant gram-positive bacteria represent a serious clinical problem. Telavancin is a novel lipoglycopeptide antibiotic that possesses rapid in vitro bactericidal activity against a broad spectrum of clinically relevant gram-positive pathogens. Here we demonstrate that telavancin's antibacterial activity derives from at least two mechanisms. As observed with vancomycin, telavancin inhibited late-stage peptidoglycan biosynthesis in a substrate-dependent fashion and bound the cell wall, as it did the lipid II surrogate tripeptideN,N′-diacetyl-l-lysinyl-d-alanyl-d-alanine, with high affinity. Telavancin also perturbed bacterial cell membrane potential and permeability. In methicillin-resistantStaphylococcus aureus, telavancin caused rapid, concentration-dependent depolarization of the plasma membrane, increases in permeability, and leakage of cellular ATP and K+. The timing of these changes correlated with rapid , concentration-dependent loss of bacterial viability, suggesting that the early bactericidal activity of telavancin results from dissipation of cell membrane potential and an increase in membrane permeability. Binding and cell fractionation studies provided direct evidence for an interaction of telavancin with the bacterial cell membrane; stronger binding interactions were observed with the bacterial cell wall and cell membrane relative to vancomycin. We suggest that this multifunctional mechanism of action confers advantageous antibacterial properties.


Planta Medica ◽  
2016 ◽  
Vol 81 (S 01) ◽  
pp. S1-S381
Author(s):  
K Yusook ◽  
O Weeranantanapan ◽  
S Riyajan ◽  
J Musika ◽  
N Chudapongse

2021 ◽  
Vol 118 (40) ◽  
pp. e2108155118
Author(s):  
Jazmín Meza-Torres ◽  
Mickaël Lelek ◽  
Juan J. Quereda ◽  
Martin Sachse ◽  
Giulia Manina ◽  
...  

Listeriolysin S (LLS) is a thiazole/oxazole–modified microcin (TOMM) produced by hypervirulent clones of Listeria monocytogenes. LLS targets specific gram-positive bacteria and modulates the host intestinal microbiota composition. To characterize the mechanism of LLS transfer to target bacteria and its bactericidal function, we first investigated its subcellular distribution in LLS-producer bacteria. Using subcellular fractionation assays, transmission electron microscopy, and single-molecule superresolution microscopy, we identified that LLS remains associated with the bacterial cell membrane and cytoplasm and is not secreted to the bacterial extracellular space. Only living LLS-producer bacteria (and not purified LLS-positive bacterial membranes) display bactericidal activity. Applying transwell coculture systems and microfluidic-coupled microscopy, we determined that LLS requires direct contact between LLS-producer and -target bacteria in order to display bactericidal activity, and thus behaves as a contact-dependent bacteriocin. Contact-dependent exposure to LLS leads to permeabilization/depolarization of the target bacterial cell membrane and adenosine triphosphate (ATP) release. Additionally, we show that lipoteichoic acids (LTAs) can interact with LLS and that LTA decorations influence bacterial susceptibility to LLS. Overall, our results suggest that LLS is a TOMM that displays a contact-dependent inhibition mechanism.


Antibiotics ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 543
Author(s):  
Ozioma F. Nwabor ◽  
Sukanlaya Leejae ◽  
Supayang P. Voravuthikunchai

As the burden of antibacterial resistance worsens and treatment options become narrower, rhodomyrtone—a novel natural antibiotic agent with a new antibacterial mechanism—could replace existing antibiotics for the treatment of infections caused by multi-drug resistant Gram-positive bacteria. In this study, rhodomyrtone was detected within the cell by means of an easy an inexpensive method. The antibacterial effects of rhodomyrtone were investigated on epidemic methicillin-resistant Staphylococcus aureus. Thin-layer chromatography demonstrated the entrapment and accumulation of rhodomyrtone within the bacterial cell wall and cell membrane. The incorporation of radiolabelled precursors revealed that rhodomyrtone inhibited the synthesis of macromolecules including DNA, RNA, proteins, the cell wall, and lipids. Following the treatment with rhodomyrtone at MIC (0.5–1 µg/mL), the synthesis of all macromolecules was significantly inhibited (p ≤ 0.05) after 4 h. Inhibition of macromolecule synthesis was demonstrated after 30 min at a higher concentration of rhodomyrtone (4× MIC), comparable to standard inhibitor compounds. In contrast, rhodomyrtone did not affect lipase activity in staphylococci—both epidemic methicillin-resistant S. aureus and S. aureus ATCC 29213. Interfering with the synthesis of multiple macromolecules is thought to be one of the antibacterial mechanisms of rhodomyrtone.


RSC Advances ◽  
2015 ◽  
Vol 5 (81) ◽  
pp. 66476-66486 ◽  
Author(s):  
Dibyendu Das ◽  
Sumyra Sidiq ◽  
Santanu Kumar Pal

Liquid crystals offer a promising approach to study and quantify the interactions between different bacterial cell membrane components with endotoxin at an aqueous interface.


Molecules ◽  
2020 ◽  
Vol 25 (17) ◽  
pp. 3955 ◽  
Author(s):  
Xin Wang ◽  
Yi Shen ◽  
Kiran Thakur ◽  
Jinzhi Han ◽  
Jian-Guo Zhang ◽  
...  

Though essential oils exhibit antibacterial activity against food pathogens, their underlying mechanism is understudied. We extracted ginger essential oil (GEO) using supercritical CO2 and steam distillation. A chemical composition comparison by GC-MS showed that the main components of the extracted GEOs were zingiberene and α-curcumene. Their antibacterial activity and associated mechanism against Staphylococcus aureus and Escherichia coli were investigated. The diameter of inhibition zone (DIZ) of GEO against S. aureus was 17.1 mm, with a minimum inhibition concentration (MIC) of 1.0 mg/mL, and minimum bactericide concentration (MBC) of 2.0 mg/mL. For E. coli, the DIZ was 12.3 mm with MIC and MBC values of 2.0 mg/mL and 4.0 mg/mL, respectively. The SDS-PAGE analysis revealed that some of the electrophoretic bacterial cell proteins bands disappeared with the increase in GEO concentration. Consequently, the nucleic acids content of bacterial suspension was raised significantly and the metabolic activity of bacteria was markedly decreased. GEO could thus inhibit the expression of some genes linked to bacterial energy metabolism, tricarboxylic acid cycle, cell membrane-related proteins, and DNA metabolism. Our findings speculate the bactericidal effects of GEO primarily through disruption of the bacterial cell membrane indicating its suitability in food perseveration.


Sign in / Sign up

Export Citation Format

Share Document