scholarly journals Alternative matrices in forensic toxicology: a critical review

Author(s):  
Eduardo Geraldo de Campos ◽  
Bruno Ruiz Brandão da Costa ◽  
Fabiana Spineti dos Santos ◽  
Fernanda Monedeiro ◽  
Marcela Nogueira Rabelo Alves ◽  
...  

Abstract Purpose The use of alternative matrices in toxicological analyses has been on the rise in clinical and forensic settings. Specimens alternative to blood and urine are useful in providing additional information regarding drug exposure and analytical benefits. The goal of this paper is to present a critical review on the most recent literature regarding the application of six common alternative matrices, i.e., oral fluid, hair, sweat, meconium, breast milk and vitreous humor in forensic toxicology. Methods The recent literature have been searched and reviewed for the characteristics, advantages and limitations of oral fluid, hair, sweat, meconium, breast milk and vitreous humor and its applications in the analysis of traditional drugs of abuse and novel psychoactive substances (NPS). Results This paper outlines the properties of six biological matrices that have been used in forensic analyses, as alternatives to whole blood and urine specimens. Each of this matrix has benefits in regards to sampling, extraction, detection window, typical drug levels and other aspects. However, theses matrices have also limitations such as limited incorporation of drugs (according to physical–chemical properties), impossibility to correlate the concentrations for effects, low levels of xenobiotics and ultimately the need for more sensitive analysis. For more traditional drugs of abuse (e.g., cocaine and amphetamines), there are already data available on the detection in alternative matrices. However, data on the determination of emerging drugs such as the NPS in alternative biological matrices are more limited. Conclusions Alternative biological fluids are important specimens in forensic toxicology. These matrices have been increasingly reported over the years, and this dynamic will probably continue in the future, especially considering their inherent advantages and the possibility to be used when blood or urine are unavailable. However, one should be aware that these matrices have limitations and particular properties, and the findings obtained from the analysis of these specimens may vary according to the type of matrix. As a potential perspective in forensic toxicology, the topic of alternative matrices will be continuously explored, especially emphasizing NPS.

2011 ◽  
Vol 21 (1) ◽  
Author(s):  
Hallvard Gjerde ◽  
Elisabeth Leere Øiestad ◽  
Asbjørg S. Christophersen

Blood, oral fluid (saliva), urine and hair are the most commonly used biological matrices for drug testing in epidemiological drug research. Other biological matrices may also be used for selected purposes. Blood reflects recent drug intake and may be used to assess impairment. Oral fluid reflects drug presence in blood and thereby also recent intake, but drug concentrations in this matrix cannot be used to accurately estimate concentrations in blood. Urine reflects drug use during the last few days and in some cases for a longer period, but does not indicate the dose size or frequency of use. Hair reflects drug use during several months, but is a poor matrix for detecting use of cannabis. If using a single drug dose, this can be detected in blood and urine if the sample is taken within the detection timeframes, in most cases also in oral fluid. Single drug use is most often insufficient for producing a positive test result in a sample of hair. For cocaine and amphetamine, weekly use may be needed, while for cannabis a positive result is not guaranteed even after daily use. Refusal rates are lowest for oral fluid and highest for blood and hair samples. The analytical costs are lowest for urine and highest for hair. Combined use of questionnaires/interviews and drug testing detects more drug use than when using only one of those methods and is therefore expected to give more accurate data.


Molecules ◽  
2021 ◽  
Vol 26 (19) ◽  
pp. 5870
Author(s):  
Flaminia Vincenti ◽  
Camilla Montesano ◽  
Svetlana Pirau ◽  
Adolfo Gregori ◽  
Fabiana Di Rosa ◽  
...  

Fentanyl and fentalogs’ intake as drugs of abuse is experiencing a great increase in recent years. For this reason, there are more and more cases in which it is important to recognize and quantify these molecules and related metabolites in biological matrices. Oral fluid (OF) is often used to find out if a subject has recently used a psychoactive substance and if, therefore, the person is still under the effect of psychotropics. Given its difficulty in handling, good sample preparation and the development of instrumental methods for analysis are essential. In this work, an analytical method is proposed for the simultaneous determination of 25 analytes, including fentanyl, several derivatives and metabolites. OF was collected by means of passive drool; sample pretreatment was developed in order to be fast, simple and possibly semi-automated by exploiting microextraction on packed sorbent (MEPS). The analysis was performed by means of LC–HRMS/MS obtaining good identification and quantification of all the analytes in less than 10 min. The proposed method was fully validated according to the Scientific Working Group for Forensic Toxicology (SWGTOX) international guidelines. Good results were obtained in terms of recoveries, matrix effect and sensitivity, showing that this method could represent a useful tool in forensic toxicology. The presented method was successfully applied to the analysis of proficiency test samples.


Bioanalysis ◽  
2020 ◽  
Vol 12 (15) ◽  
pp. 1087-1102
Author(s):  
Ana Luiza Freitas de Assis Linhares ◽  
Mauricio Yonamine

Direct ambient ionization techniques have been developed with the aim to reduce the complexity of mass spectrometry analysis by minimizing sample preparation and chromatographic separation. In this context, paper spray-MS (PS-MS) is an innovative approach that provides faster and cheaper analysis of biofluids by the addition of the sample directly to a paper. In forensic toxicology, the analytical workflow for the detection and quantification of drugs of abuse is onerous, including sample treatment, extraction and clean up, especially regarding complex biological matrices. PS-MS allows the detection of analytes of toxicological interest in blood, plasma and urine using low sample volume. This review aims to discuss the potential use, advances and challenges of PS-MS in forensic toxicology.


2021 ◽  
Vol 5 (1) ◽  
pp. 14-18
Author(s):  
Marina Camargo Galera ◽  
Luciana Grazziotin Rossato-Grando

In forensic toxicology, alternative matrices and sampling sites are required for a correlation of antemortem and postmortem concentrations with the least possible error. Postmortem redistribution phenomena and biochemical changes inherent to these processes are possible, and represent interferences in these analyses. This study aimed to perform a bibliographic review through Pubmed database within a 10-year period of time, using the keywords: forensic analysis AND redistribution. We observed that for quantitative analyses the preferred matrix is blood from peripheral vessels, and when it is not available, vitreous humor is a great specimen for choice. 


2020 ◽  
Vol 16 (7) ◽  
pp. 872-879
Author(s):  
Samin Hamidi

Background: Abuse of drugs is associated with several medical, forensic, toxicology and social challenges. “Drugs of abuse” testing is therefore an important issue. Objective: We propose a simple CE-based method for the quantification of amphetamine, codeine and morphine after direct injection of Exhaled Breath Condensate (EBC) by the aid of simple stacking mode and an off-line pre-concentration method. Methods: Using graphene oxide adsorbents, amphetamine, codeine and morphine were extracted from EBC in order to eliminate the proteins and other interferences. In addition to off-line method, an online stacking mode was applied to improve the analytical signal obtained from the instrument. Results: The validation parameters were experimented on the developed method based on the FDA guideline over concentration ranges of 12.5-100, 30-500 and 10-1250 ng/mL associated with amphetamine, codeine and morphine, respectively. Small volumes (around 100 μL) of EBC were collected using a lab-made setup and successfully analyzed using the proposed method where precisions and accuracies (within day and between days) were in accordance with the guideline (recommended less than 15 % for biological samples). The recovery tests were used to evaluate the matrix effect and data (94 to 105 %) showed that the proposed method can be applied in different EBC matrix samplings of subjects. Conclusion: The proposed method is superior for simultaneous determination of amphetamine, codeine and morphine over chromatographic analyses because it is fast and consumes fewer chemicals, with no derivatization step.


Author(s):  
Lin Lin ◽  
Piyadarsha Amaratunga ◽  
Jerome Reed ◽  
Pornkamol Huang ◽  
Bridget Lorenz Lemberg ◽  
...  

Abstract Quantitative analysis of Δ9-tetrahydrocannabinol (Δ9-THC) in oral fluid has gained increasing interest in clinical and forensic toxicology laboratories. New medicinal and/or recreational cannabinoid products require laboratories to distinguish different patterns of cannabinoid use. This study validated a high-performance liquid chromatography-tandem mass spectrometry method for 13 different cannabinoids, including (-)-trans-Δ8-tetrahydrocannabinol (Δ8-THC), (-)-trans-Δ9-tetrahydrocannabinol (Δ9-THC), cannabidiol (CBD), Δ9-tetrahydrocannabinolic acid-A (Δ9-THCA-A), cannabidiolic acid (CBDA), 11-hydroxy-Δ9-tetrahydrocannabinol (11-OH-Δ9-THC), 11-nor-9-carboxy-Δ9-tetrahydrocannabinol (Δ9-THCCOOH), tetrahydrocannabivarin (THCV), cannabidivarin (CBDV), cannabidiorcol (CBD-C1), cannabichromene (CBC), cannabinol (CBN) and cannabigerol (CBG), in oral fluid. Baseline separation was achieved in the entire quantitation range between Δ9-THC and its isomer Δ8-THC. The quantitation range of Δ9-THC, Δ8-THC and CBD was from 0.1 to 800 ng/mL. Two hundred human subject oral fluid samples were analyzed with this method after solid phase extraction. Among the 200 human subject oral fluid samples, all 13 cannabinoid analytes were confirmed in at least one sample. Δ8-THC was confirmed in 11 samples, with or without the presence of Δ9-THC. A high concentration of 11-OH-Δ9-THC or Δ9-THCCOOH (>400 ng/mL) was confirmed in three samples. CBD, Δ9-THCA-A, THCV, CBN and CBG were confirmed in 74, 39, 44, 107 and 112 of the 179 confirmed Δ9-THC-positive samples, respectively. The quantitation of multiple cannabinoids and metabolites in oral fluid simultaneously provides valuable information for revealing cannabinoid consumption and interpreting cannabinoid-induced driving impairment.


Author(s):  
Anna Wójtowicz ◽  
Agata Mitura ◽  
Renata Wietecha-Posłuszny ◽  
Rafał Kurczab ◽  
Marcin Zawadzki

AbstractVitreous humor (VH) is an alternative biological matrix with a great advantage of longer availability for analysis due to the lack of many enzymes. The use of VH in forensic toxicology may have an added benefit, however, this application requires rapid, simple, non-destructive, and relatively portable analytical analysis methods. These requirements may be met by Fourier transform infrared spectroscopy technique (FT-IR) equipped with attenuated total reflection accessory (ATR). FT-IR spectra of vitreous humor samples, deposited on glass slides, were collected and subsequent chemometric data analysis by means of Hierarchical Cluster Analysis and Principal Component Analysis was conducted. Differences between animal and human VH samples and human VH samples stored for diverse periods of time were detected. A kinetic study of changes in the VH composition up to 2 weeks showed the distinction of FT-IR spectra collected on the 1st and 14th day of storage. In addition, data obtained for the most recent human vitreous humor samples—collected 3 and 2 years before the study, presented successful discrimination of all time points studied. The method introduced was unable to detect mephedrone addition to VH in the concentration of 10 µg/cm3. Graphic abstract


Metabolites ◽  
2021 ◽  
Vol 11 (3) ◽  
pp. 166
Author(s):  
Andrea E. Steuer ◽  
Justine Raeber ◽  
Fabio Simbuerger ◽  
Dario A. Dornbierer ◽  
Oliver G. Bosch ◽  
...  

In forensic toxicology, gamma-hydroxybutyrate (GHB) still represents one of the most challenging drugs of abuse in terms of analytical detection and interpretation. Given its rapid elimination, the detection window of GHB in common matrices is short (maximum 12 h in urine). Additionally, the differentiation from naturally occurring endogenous GHB, is challenging. Thus, novel biomarkers to extend the detection window of GHB are urgently needed. The present study aimed at searching new potential biomarkers of GHB use by means of mass spectrometry (MS) metabolomic profiling in serum (up to 16.5 h) and urine samples (up to 8 h after intake) collected during a placebo-controlled crossover study in healthy men. MS data acquired by different analytical methods (reversed phase and hydrophilic interaction liquid chromatography; positive and negative electrospray ionization each) were filtered for significantly changed features applying univariate and mixed-effect model statistics. Complementary to a former study, conjugates of GHB with glycine, glutamate, taurine, carnitine and pentose (ribose) were identified in urine, with particularly GHB-pentose being promising for longer detection. None of the conjugates were detectable in serum. Therein, mainly energy metabolic substrates were identified, which may be useful for more detailed interpretation of underlying pathways but are too unspecific as biomarkers.


Sign in / Sign up

Export Citation Format

Share Document