Comparative analysis of whole genome structure of Streptococcus suis using whole genome PCR scanning

2008 ◽  
Vol 51 (1) ◽  
pp. 21-26 ◽  
Author(s):  
ZhaoHui Xiong ◽  
CanDong Wei ◽  
Jian Yang ◽  
JunPing Peng ◽  
XingYe Xu ◽  
...  
2006 ◽  
Vol 51 (10) ◽  
pp. 1199-1209 ◽  
Author(s):  
Wu Wei ◽  
Guohui Ding ◽  
Xiaojing Wang ◽  
Jingchun Sun ◽  
Kang Tu ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Mostafa Y. Abdel-Glil ◽  
Uwe Fischer ◽  
Dieter Steinhagen ◽  
Una McCarthy ◽  
Heinrich Neubauer ◽  
...  

Yersinia ruckeri is the causative agent of enteric redmouth disease (ERM), a serious infection that affects global aquaculture with high economic impact. The present study used whole genome sequences to perform a comparative analysis on 10 Y. ruckeri strains and to explore their genetic relatedness to other members of the genus. Y. ruckeri, Yersinia entomophaga, and Yersinia nurmii formed a species complex that constitutes the most basal lineage of the genus. The results showed that the taxonomy of Y. ruckeri strains is better defined by using a core genome alignment and phylogenetic analysis. The distribution of accessory genes in all Yersinia species revealed the presence of 303 distinctive genes in Y. ruckeri. Of these, 169 genes were distributed in 17 genomic islands potentially involved in the pathogenesis of ERM via (1) encoding virulence factors such as Afp18, Yrp1, phage proteins and (2) improving the metabolic capabilities by enhancing utilization and metabolism of iron, amino acids (specifically, arginine and histidine), and carbohydrates. The genome of Y. ruckeri is highly conserved regarding gene structure, gene layout and functional categorization of genes. It contains various components of mobile genetic elements but lacks the CRISPR-Cas system and possesses a stable set of virulence genes possibly playing a critical role in pathogenicity. Distinct virulence plasmids were exclusively restricted to a specific clonal group of Y. ruckeri (CG4), possibly indicating a selective advantage. Phylogenetic analysis of Y. ruckeri genomes revealed the co-presence of multiple genetically distant lineages of Y. ruckeri strains circulating in Germany. Our results also suggest a possible dissemination of a specific group of strains in the United States, Peru, Germany, and Denmark. In conclusion, this study provides new insights into the taxonomy and evolution of Y. ruckeri and contributes to a better understanding of the pathogenicity of ERM in aquaculture. The genomic analysis presented here offers a framework for the development of more efficient control strategies for this pathogen.


2018 ◽  
Vol 12 (6) ◽  
pp. e0006566 ◽  
Author(s):  
Elizabeth M. Batty ◽  
Suwittra Chaemchuen ◽  
Stuart Blacksell ◽  
Allen L. Richards ◽  
Daniel Paris ◽  
...  

2018 ◽  
Vol 6 (10) ◽  
Author(s):  
Jingchao Chen ◽  
Yi Li ◽  
Kun Zhang ◽  
Hailei Wang

ABSTRACT The genomes of many strains of Escherichia coli have been sequenced, as this organism is a classic model bacterium. Here, we report the genome sequence of Escherichia coli DH5α, which is resistant to a T4 bacteriophage (CCTCC AB 2015375), while its other homologous E. coli strains, such as E. coli BL21, DH10B, and MG1655, are not resistant to phage invasions. Thus, understanding of the genome of the DH5α strain, along with comparative analysis of its genome sequence along with other sequences of E. coli strains, may help to reveal the bacteriophage resistance mechanism of E. coli .


2019 ◽  
Vol 8 (5) ◽  
Author(s):  
Marc J. A. Stevens ◽  
Nathalie Spoerry Serrano ◽  
Nicole Cernela ◽  
Sarah Schmitt ◽  
Jacques Schrenzel ◽  
...  

Here we report the whole-genome sequences of 15 clinical Streptococcus suis strains isolated from pigs in Switzerland. Although they originated from the same host and geographic origin, the strains showed a large amount of diversity.


Agronomy ◽  
2018 ◽  
Vol 8 (9) ◽  
pp. 159 ◽  
Author(s):  
Xiaojun Nie ◽  
Xian Zhao ◽  
Sue Wang ◽  
Ting Zhang ◽  
Chong Li ◽  
...  

Broomcorn millet (Panicum miliaceum L.) is one of the earliest domesticated cereals worldwide, holding significant agricultural, historical, and evolutionary importance. However, our genomic knowledge of it is rather limited at present, hampering further genetic and evolutionary studies. Here, we sequenced and assembled the chloroplast genome (cp) of broomcorn millet and compared it with five other Panicoideae species. Results showed that the cp genome of broomcorn millet was 139,826 bp in size, with a typical quadripartite structure. In total, 108 genes were annotated and 18 genes were duplicated in the IR (inverted region) region, which was similar to other Panicoideae species. Comparative analysis showed a rather conserved genome structure between them, with three common regions. Furthermore, RNA editing, codon usage, and expansion of the IR, as well as simple sequence repeat (SSR) elements, were systematically investigated and 13 potential DNA markers were developed for Panicoideae species identification. Finally, phylogenetic analysis implied that broomcorn millet was a sister species to Panicum virgatum within the tribe Paniceae, and supported a monophyly of the Panicoideae. This study has reported for the first time the genome organization, gene content, and structural features of the chloroplast genome of broomcorn millet, which provides valuable information for genetic and evolutionary studies in the genus Panicum and beyond.


2014 ◽  
Vol 8 (Suppl 1) ◽  
pp. S33 ◽  
Author(s):  
Jin J Zhou ◽  
Wai-Ki Yip ◽  
Michael H Cho ◽  
Dandi Qiao ◽  
Merry-Lynn N McDonald ◽  
...  

2019 ◽  
Vol 8 (23) ◽  
Author(s):  
Rogier A. Gaiser ◽  
Aldert L. Zomer ◽  
Jerry M. Wells ◽  
Peter van Baarlen

Here, we report the draft whole-genome sequence of Streptococcus suis strain S10, isolated from the tonsils of a healthy pig. S. suis S10 belongs to the highly virulent serotype 2, which includes isolates that cause infectious diseases, including meningitis, in pigs and human.


Sign in / Sign up

Export Citation Format

Share Document