Processes of coastal ecosystem carbon sequestration and approaches for increasing carbon sink

2017 ◽  
Vol 60 (5) ◽  
pp. 809-820 ◽  
Author(s):  
Yao Zhang ◽  
MeiXun Zhao ◽  
Qiu Cui ◽  
Wei Fan ◽  
JiaGuo Qi ◽  
...  
2021 ◽  
Vol 12 ◽  
Author(s):  
Brian Njoroge ◽  
Yuelin Li ◽  
Shimin Wei ◽  
Ze Meng ◽  
Shizhong Liu ◽  
...  

Compared with other forest systems, research interest in the potential for a stronger ecosystem carbon sequestration of evergreen forests throughout subtropical China has greatly increased. The eddy covariance technique is widely employed to determine accurate forest-atmosphere carbon dioxide (CO2) flux, which is subsequently used to determine forest ecosystem carbon exchange characteristics. The Dinghushan Biosphere Reserve, a subtropical monsoon evergreen broad-leaved forest, is a suitable study area due to its warm and humid climate (compared with other regions within the same latitude), consequently playing a role in the carbon cycle in the region. For this study, we hypothesized that the forest land in this region generally acts as a carbon sink, and that its carbon sequestration capacity increases over time despite the influence of climatic factors. Here, we compared net CO2 flux data derived from the eddy covariance technique over an 8-year study window. Additionally, we ascertained the effects of various environmental factors on net CO2 flux, while also using the Michaelis–Menten model and a physiologically based process model to track and report on ecosystem carbon exchange characteristics. We observed seasonal trends in daily ecosystem flux, indicative of sensitivity to climatic factors, such as air temperature, precipitation, and sunlight. The carbon sequestration capacity of the region exhibited seasonal variability, increasing from October to March (−264 g C m−2 year−1, i.e., 48.4%) while weakening from April to September (−150 g C m−2 year−1, i.e., 40.4%) on average. The net ecosystem exchange (NEE) rate varied from −518 to −211 g C m−2 year−1; ecosystem respiration (Re) varied from 1,142 to 899 g C m−2 year−1; and gross primary production (GPP) varied from 1,552 to 1,254 g C m−2 year−1. This study found that even though the Dinghushan Biosphere Reserve generally acts as a carbon sink, its carbon sequestration capacity did not increase significantly throughout the study period. The techniques (models) used in this study are suitable for application in other ecosystems globally, which can aid in their management and conservation. Finally, the Dinghushan Biosphere Reserve is both an exemplary and a model forest system useful in exploring CO2 absorption and sequestration from the atmosphere.


Author(s):  
Christine Bertram ◽  
Martin Quaas ◽  
Thorsten B. H. Reusch ◽  
Athanasios T. Vafeidis ◽  
Claudia Wolff ◽  
...  

AbstractCarbon sequestration and storage in mangroves, salt marshes and seagrass meadows is an essential coastal ‘blue carbon’ ecosystem service for climate change mitigation. Here we offer a comprehensive, global and spatially explicit economic assessment of carbon sequestration and storage in three coastal ecosystem types at the global and national levels. We propose a new approach based on the country-specific social cost of carbon that allows us to calculate each country’s contribution to, and redistribution of, global blue carbon wealth. Globally, coastal ecosystems contribute a mean ± s.e.m. of US$190.67 ± 30 bn yr−1 to blue carbon wealth. The three countries generating the largest positive net blue wealth contribution for other countries are Australia, Indonesia and Cuba, with Australia alone generating a positive net benefit of US$22.8 ± 3.8 bn yr−1 for the rest of the world through coastal ecosystem carbon sequestration and storage in its territory.


2013 ◽  
Vol 10 (3) ◽  
pp. 1751-1773 ◽  
Author(s):  
D. R. Cameron ◽  
M. Van Oijen ◽  
C. Werner ◽  
K. Butterbach-Bahl ◽  
R. Grote ◽  
...  

Abstract. Forests are important components of the greenhouse gas balance of Europe. There is considerable uncertainty about how predicted changes to climate and nitrogen deposition will perturb the carbon and nitrogen cycles of European forests and thereby alter forest growth, carbon sequestration and N2O emission. The present study aimed to quantify the carbon and nitrogen balance, including the exchange of greenhouse gases, of European forests over the period 2010–2030, with a particular emphasis on the spatial variability of change. The analysis was carried out for two tree species: European beech and Scots pine. For this purpose, four different dynamic models were used: BASFOR, DailyDayCent, INTEGRATOR and Landscape-DNDC. These models span a range from semi-empirical to complex mechanistic. Comparison of these models allowed assessment of the extent to which model predictions depended on differences in model inputs and structure. We found a European average carbon sink of 0.160 ± 0.020 kgC m−2 yr−1 (pine) and 0.138 ± 0.062 kgC m−2 yr−1 (beech) and N2O source of 0.285 ± 0.125 kgN ha−1 yr−1 (pine) and 0.575 ± 0.105 kgN ha−1 yr−1 (beech). The European average greenhouse gas potential of the carbon sink was 18 (pine) and 8 (beech) times that of the N2O source. Carbon sequestration was larger in the trees than in the soil. Carbon sequestration and forest growth were largest in central Europe and lowest in northern Sweden and Finland, N. Poland and S. Spain. No single driver was found to dominate change across Europe. Forests were found to be most sensitive to change in environmental drivers where the drivers were limiting growth, where changes were particularly large or where changes acted in concert. The models disagreed as to which environmental changes were most significant for the geographical variation in forest growth and as to which tree species showed the largest rate of carbon sequestration. Pine and beech forests were found to have differing sensitivities to environmental change, in particular the response to changes in nitrogen and precipitation, with beech forest more vulnerable to drought. There was considerable uncertainty about the geographical location of N2O emissions. Two of the models BASFOR and LandscapeDNDC had largest emissions in central Europe where nitrogen deposition and soil nitrogen were largest, whereas the two other models identified different regions with large N2O emission. N2O emissions were found to be larger from beech than pine forests and were found to be particularly sensitive to forest growth.


Forests ◽  
2021 ◽  
Vol 12 (10) ◽  
pp. 1427
Author(s):  
Chunju Cai ◽  
Zhihan Yang ◽  
Liang Liu ◽  
Yunsen Lai ◽  
Junjie Lei ◽  
...  

Nitrogen (N) deposition has been well documented to cause substantial impacts on ecosystem carbon cycling. However, the majority studies of stimulating N deposition by direct N addition to forest floor have neglected some key ecological processes in forest canopy (e.g., N retention and absorption) and might not fully represent realistic atmospheric N deposition and its effects on ecosystem carbon cycling. In this study, we stimulated both canopy and understory N deposition (50 and 100 kg N ha−1 year−1) with a local atmospheric NHx:NOy ratio of 2.08:1, aiming to assess whether canopy and understory N deposition had similar effects on soil respiration (RS) and net ecosystem production (NEP) in Moso bamboo forests. Results showed that RS, soil autotrophic (RA), and heterotrophic respiration (RH) were 2971 ± 597, 1472 ± 579, and 1499 ± 56 g CO2 m−2 year−1 for sites without N deposition (CN0), respectively. Canopy and understory N deposition did not significantly affect RS, RA, and RH, and the effects of canopy and understory N deposition on these soil fluxes were similar. NEP was 1940 ± 826 g CO2 m−2 year−1 for CN0, which was a carbon sink, indicating that Moso bamboo forest the potential to play an important role alleviating global climate change. Meanwhile, the effects of canopy and understory N deposition on NEP were similar. These findings did not support the previous predictions postulating that understory N deposition would overestimate the effects of N deposition on carbon cycling. However, due to the limitation of short duration of N deposition, an increase in the duration of N deposition manipulation is urgent and essential to enhance our understanding of the role of canopy processes in ecosystem carbon fluxes in the future.


Soil Systems ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 10 ◽  
Author(s):  
Alejandro Cueva ◽  
Till H. M. Volkmann ◽  
Joost van Haren ◽  
Peter A. Troch ◽  
Laura K. Meredith

Soil fluxes of CO2 (Fs) have long been considered unidirectional, reflecting the predominant roles of metabolic activity by microbes and roots in ecosystem carbon cycling. Nonetheless, there is a growing body of evidence that non-biological processes in soils can outcompete biological ones, pivoting soils from a net source to sink of CO2, as evident mainly in hot and cold deserts with alkaline soils. Widespread reporting of unidirectional fluxes may lead to misrepresentation of Fs in process-based models and lead to errors in estimates of local to global carbon balances. In this study, we investigate the variability and environmental controls of Fs in a large-scale, vegetation-free, and highly instrumented hillslope located within the Biosphere 2 facility, where the main carbon sink is driven by carbonate weathering. We found that the hillslope soils were persistent sinks of CO2 comparable to natural desert shrublands, with an average rate of −0.15 ± 0.06 µmol CO2 m2 s−1 and annual sink of −56.8 ± 22.7 g C m−2 y−1. Furthermore, higher uptake rates (more negative Fs) were observed at night, coinciding with strong soil–air temperature gradients and [CO2] inversions in the soil profile, consistent with carbonate weathering. Our results confirm previous studies that reported negative values of Fs in hot and cold deserts around the globe and suggest that negative Fs are more common than previously assumed. This is particularly important as negative Fs may occur widely in arid and semiarid ecosystems, which play a dominant role in the interannual variability of the terrestrial carbon cycle. This study contributes to the growing recognition of the prevalence of negative Fs as an important yet, often overlooked component of ecosystem C cycling.


2013 ◽  
Vol 779-780 ◽  
pp. 1314-1319
Author(s):  
Xing Long Zhu ◽  
Chen Zhao

The paper discusses the importance of increasing the carbon sink function of the highway system in maintaining carbon cycle balance of the Earth and "Carbon neutral" concept is used in highway roadside design. The carbon emission and carbon sequestration capacity of forest on both sides of the highway system are also calculated. The results show that most of the road green design has not yet reached a self-balancing capability of neutral carbon sink, and the establishment of the carbon sink forest from 50m to 100m will realize the carbon balance of the transport system.


2013 ◽  
Vol 712-715 ◽  
pp. 3049-3058
Author(s):  
Qiu Ju Zhang

The sequestration of forest, farmland, and Green garden carbon inJiangmen City during 2004 to 2010 has been estimated. The biggest carbon sink in 2010 is the forest, with an annual carbon sequestration of ; next is the farmland, with an annual carbon sequestration of . The C uptaken by these two types of carbon sinks accounts for 95% of all the carbon sinks in Jiangmen City. Potentials for the increase of carbon sinks are then discussed. To popularize growing green manure during winter may increase carbon sequestration at about every year. If all the newly established open forests in the whole City in 2010 are fenced for forest conservation, an annual carbon sequestration of may be expected to increase in two years. If the per mu yield of crops below the average of Guangdong Province in 2010 are increased to the average, an annual carbon sequestration of may increase.


2014 ◽  
Vol 195-196 ◽  
pp. 32-37 ◽  
Author(s):  
Yang Gao ◽  
Xianjin Zhu ◽  
Guirui Yu ◽  
Nianpeng He ◽  
Qiufeng Wang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document