Review of Chinese atmospheric science research over the past 70 years: Climate and climate change

2019 ◽  
Vol 62 (10) ◽  
pp. 1514-1550 ◽  
Author(s):  
Jianping Huang ◽  
Wen Chen ◽  
Zhiping Wen ◽  
Guangjun Zhang ◽  
Zhaoxin Li ◽  
...  
2019 ◽  
Vol 62 (12) ◽  
pp. 1946-1991 ◽  
Author(s):  
Zhiyong Meng ◽  
Fuqing Zhang ◽  
Dehai Luo ◽  
Zhemin Tan ◽  
Juan Fang ◽  
...  

2007 ◽  
Vol 87 (4) ◽  
pp. 353-360
Author(s):  
H. Henry Janzen ◽  
Shannan M. Little ◽  
Leslie J. Cramer ◽  
Francis J. Larney

The Canadian Journal of Soil Science (CJSS) is fifty years old! Here we look back and unearth trends and topics in soil science that have enticed us over those 50 years. Some study areas have stayed prominent throughout (e.g., nitrogen); others flourished then waned (e.g., salinity); and still others are now just ascending (e.g., climate change). And the way the papers look too has changed: they have become longer and with more authors, for example. Having looked briefly at the past half-century, we peer ahead into the one coming, mulling some changes, not necessarily to advocate them, but merely as possible seeds for collective pondering. Key words: History, soil science research, scientific writing


2019 ◽  
Vol 62 (12) ◽  
pp. 1903-1945 ◽  
Author(s):  
Tijian Wang ◽  
Taichang Gao ◽  
Hongsheng Zhang ◽  
Maofa Ge ◽  
Hengchi Lei ◽  
...  

Author(s):  
William R. Thompson ◽  
Leila Zakhirova

In this final chapter, we conclude by recapitulating our argument and evidence. One goal of this work has been to improve our understanding of the patterns underlying the evolution of world politics over the past one thousand years. How did we get to where we are now? Where and when did the “modern” world begin? How did we shift from a primarily agrarian economy to a primarily industrial one? How did these changes shape world politics? A related goal was to examine more closely the factors that led to the most serious attempts by states to break free of agrarian constraints. We developed an interactive model of the factors that we thought were most likely to be significant. Finally, a third goal was to examine the linkages between the systemic leadership that emerged from these historical processes and the global warming crisis of the twenty-first century. Climate change means that the traditional energy platforms for system leadership—coal, petroleum, and natural gas—have become counterproductive. The ultimate irony is that we thought that the harnessing of carbon fuels made us invulnerable to climate fluctuations, while the exact opposite turns out to be true. The more carbon fuels are consumed, the greater the damage done to the atmosphere. In many respects, the competition for systemic leadership generated this problem. Yet it is unclear whether systemic leadership will be up to the task of resolving it.


Author(s):  
Partha Sarathi Datta

In many parts of the world, freshwater crisis is largely due to increasing water consumption and pollution by rapidly growing population and aspirations for economic development, but, ascribed usually to the climate. However, limited understanding and knowledge gaps in the factors controlling climate and uncertainties in the climate models are unable to assess the probable impacts on water availability in tropical regions. In this context, review of ensemble models on δ18O and δD in rainfall and groundwater, 3H- and 14C- ages of groundwater and 14C- age of lakes sediments helped to reconstruct palaeoclimate and long-term recharge in the North-west India; and predict future groundwater challenge. The annual mean temperature trend indicates both warming/cooling in different parts of India in the past and during 1901–2010. Neither the GCMs (Global Climate Models) nor the observational record indicates any significant change/increase in temperature and rainfall over the last century, and climate change during the last 1200 yrs BP. In much of the North-West region, deep groundwater renewal occurred from past humid climate, and shallow groundwater renewal from limited modern recharge over the past decades. To make water management to be more responsive to climate change, the gaps in the science of climate change need to be bridged.


2012 ◽  
Vol 84 (3) ◽  
pp. 411-423 ◽  
Author(s):  
Pietro Tundo

Since the Industrial Revolution, chlorine has featured as an iconic molecule in process chemistry even though its production by electrolysis of sodium chloride is very energy-intensive. Owing to its high energy and reactivity, chlorine allows the manufacture of chlorinated derivatives in a very easy way: AlCl3, SnCl4, TiCl4, SiCl4, ZnCl2, PCl3, PCl5, POCl3, COCl2, etc. in turn are pillar intermediates in the production of numerous everyday goods. This kind of chloride chemistry is widely used because the energy is transferred to these intermediates, making further syntheses easy. The environmental and health constraints (toxicity and eco-toxicity, ozone layer depletion) and the growing need for energy (energy efficiency, climate change) force us to take advantage from available knowledge to develop new chemical strategies. Substitution of chlorine in end products in compounds where “chlorine is used in the making” means that we avoid electrolysis as primary energetic source; this makes chemistry “without chlorine” considerably more difficult and illustrates why it has not found favor in the past. The rationale behind this Special Topic issue is to seek useful and industrially relevant examples for alternatives to chlorine in synthesis, so as to facilitate the development of industrially relevant and implementable breakthrough technologies.


2018 ◽  
Vol 42 (4) ◽  
pp. 415-430 ◽  
Author(s):  
Biao Zeng ◽  
Fuguang Zhang ◽  
Taibao Yang ◽  
Jiaguo Qi ◽  
Mihretab G Ghebrezgabher

Alpine sparsely vegetated areas (ASVAs) in mountains are sensitive to climate change and rarely studied. In this study, we focused on the response of ASVA distribution to climate change in the eastern Qilian Mountains (EQLM) from the 1990s to the 2010s. The ASVA distribution ranges in the EQLM during the past three decades were obtained from the Thematic Mapper remote sensing digital images by using the threshold of normalized difference vegetation index (NDVI) and artificial visual interpretation. Results indicated that the ASVA shrank gradually in the EQLM and lost its area by approximately 11.4% from the 1990s to the 2010s. The shrunken ASVA with markedly more area than the expanded one was mainly located at altitudes from 3700 m to 4300 m, which were comparatively lower than the average altitude of the ASVA distribution ranges. This condition led to the low ASVA boundaries in the EQLM moving upwards at a significant velocity of 22 m/decade at the regional scale. This vertical zonal process was modulated by topography-induced differences in local hydrothermal conditions. Thus, the ASVA shrank mainly in its lower parts with mild and sunny slopes. Annual maximum NDVI in the transition zone increased significantly and showed a stronger positive correlation with significantly increasing temperature than insignificant precipitation variations during 1990–2015. The ASVA shrinkage and up-shifting of its boundary were attributed to climate warming, which facilitated the upper part of alpine meadow in the EQLM by releasing the low temperature limitation on vegetation growth.


2004 ◽  
Vol 1 (1) ◽  
pp. 1-2 ◽  
Author(s):  
Henry Louis Gates

In 1903, William Edward Burghardt Du Bois famously predicted that the problem of the twentieth century would be the problem of the color line. Indeed, during the past century, matters of race were frequently the cause of intense conflict and the stimulus for public policy decisions not only in the United States, but throughout the world. The founding of the Du Bois Review: Social Science Research on Race at the beginning of the twenty-first century acknowledges the continuing impact of Du Bois's prophecy, his pioneering role as one of the founders of the discipline of sociology in the American academy, and the considerable work that remains to be done as we confront the “problem” that Du Bois identified over a century ago.


2010 ◽  
Vol 106 (4) ◽  
pp. 649-660 ◽  
Author(s):  
Minhong Song ◽  
Yaoming Ma ◽  
Yu Zhang ◽  
Maoshan Li ◽  
Weiqiang Ma ◽  
...  

2008 ◽  
Vol 32 (4) ◽  
pp. 439-461 ◽  
Author(s):  
B.J. Smith ◽  
M. Gomez-Heras ◽  
S. McCabe

The problem of the decay and conservation of stone-built heritage is a complex one, requiring input across many disciplines to identify appropriate remedial steps and management strategies. Over the past few decades, earth scientists have brought a unique perspective to this challenging area, drawing on traditions and knowledge obtained from research into landscape development and the natural environment. This paper reviews the crucial themes that have arisen particularly, although not exclusively, from the work of physical geographers — themes that have sought to correct common misconceptions held by the public, as well as those directly engaged in construction and conservation, regarding the nature, causes and controls of building stone decay. It also looks to the future, suggesting how the behaviour of building stones (and hence the work of stone decay scientists) might alter in response to the looming challenge of climate change.


Sign in / Sign up

Export Citation Format

Share Document