A two-dimensional study on natural convection and heat transfer in the enclosure with heat transfer and radiation coupled in natural convection

2010 ◽  
Vol 53 (4) ◽  
pp. 991-999 ◽  
Author(s):  
NaiYan Zhan ◽  
Mo Yang ◽  
PeiWei Xu
Computation ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 65
Author(s):  
Aditya Dewanto Hartono ◽  
Kyuro Sasaki ◽  
Yuichi Sugai ◽  
Ronald Nguele

The present work highlights the capacity of disparate lattice Boltzmann strategies in simulating natural convection and heat transfer phenomena during the unsteady period of the flow. Within the framework of Bhatnagar-Gross-Krook collision operator, diverse lattice Boltzmann schemes emerged from two different embodiments of discrete Boltzmann expression and three distinct forcing models. Subsequently, computational performance of disparate lattice Boltzmann strategies was tested upon two different thermo-hydrodynamics configurations, namely the natural convection in a differentially-heated cavity and the Rayleigh-Bènard convection. For the purposes of exhibition and validation, the steady-state conditions of both physical systems were compared with the established numerical results from the classical computational techniques. Excellent agreements were observed for both thermo-hydrodynamics cases. Numerical results of both physical systems demonstrate the existence of considerable discrepancy in the computational characteristics of different lattice Boltzmann strategies during the unsteady period of the simulation. The corresponding disparity diminished gradually as the simulation proceeded towards a steady-state condition, where the computational profiles became almost equivalent. Variation in the discrete lattice Boltzmann expressions was identified as the primary factor that engenders the prevailed heterogeneity in the computational behaviour. Meanwhile, the contribution of distinct forcing models to the emergence of such diversity was found to be inconsequential. The findings of the present study contribute to the ventures to alleviate contemporary issues regarding proper selection of lattice Boltzmann schemes in modelling fluid flow and heat transfer phenomena.


2018 ◽  
Vol 240 ◽  
pp. 01006 ◽  
Author(s):  
Nadezhda Bondareva ◽  
Mikhail Sheremet

Present study is devoted to numerical simulation of heat and mass transfer inside a cooper profile filled with paraffin enhanced with Al2O3 nanoparticles. This profile is heated by the heat-generating element of constant volumetric heat flux. Two-dimensional approximation of melting process is described by the Navier-Stokes equations in non-dimensional variables such as stream function, vorticity and temperature. The enthalpy formulation has been used for description of the heat transfer. The influence of volume fraction of nanoparticles and intensity of heat generation on melting process and natural convection in liquid phase has been studied.


2020 ◽  
Vol 330 ◽  
pp. 01004
Author(s):  
Abdennacer Belazizia ◽  
Smail Benissaad ◽  
Said Abboudi

Steady, laminar, natural convection flow in a square enclosure with partially active vertical wall is considered. The enclosure is filled with air and subjected to horizontal temperature gradient. Finite volume method is used to solve the dimensionless governing equations. The physical problem depends on three parameters: Rayleigh number (Ra =103-106), Prandtl number (Pr=0.71), and the aspect ratio of the enclosure (A=1). The active location takes two positions in the left wall: top (T) and middle (M). The main focus of the study is on examining the effect of Rayleigh number on fluid flow and heat transfer rate. The results including the streamlines, isotherm patterns, flow velocity and the average Nusselt number for different values of Ra. The obtained results show that the increase of Ra leads to enhance heat transfer rate. The fluid particles move with greater velocity for higher thermal Rayleigh number. Also by moving the active location from the top to the middle on the left vertical wall, convection and heat transfer rate are more important in case (M). Furthermore for high Rayleigh number (Ra=106), Convection mechanism in (T) case is principally in the top of the enclosure, whereas in the remaining case it covers the entire enclosure.


Author(s):  
Pablo E. Araya Go´mez ◽  
Miles Greiner

A two-dimensional computational model of a spent 7×7 Boiling Water Reactor assembly in a horizontal support basket was developed using the Fluent computational fluid dynamics package. Heat transfer simulations were performed to predict the maximum cladding temperature for assembly heat generation rates between 100 and 600W, uniform basket wall temperatures of 25 and 400°C, and with helium and nitrogen backfill gases. Different sets of simulations modeled conduction/radiation and natural convection/radiation transport across the gas filled regions to assess the importance of different transport processes. Simulations that included natural convection exhibited measurably lower cladding temperatures than those that did not only for nitrogen, at the lower basket wall temperature, and within an intermediate range of heat generation rates. Outside these conditions and for helium, conduction and radiation transport are sufficiently large so that natural convection has no measurable effect. Finally, the maximum cladding temperature is more sensitive to the assumed value of the fuel cladding emissivities when nitrogen is the backfill gas than when helium is used.


Sign in / Sign up

Export Citation Format

Share Document