Scan chain design for shift power reduction in scan-based testing

2011 ◽  
Vol 54 (4) ◽  
pp. 767-777
Author(s):  
Jia Li ◽  
Yu Hu ◽  
XiaoWei Li
Sensors ◽  
2021 ◽  
Vol 21 (18) ◽  
pp. 6111
Author(s):  
Sangjun Lee ◽  
Kyunghwan Cho ◽  
Jihye Kim ◽  
Jongho Park ◽  
Inhwan Lee ◽  
...  

Cryptographic circuits generally are used for applications of wireless sensor networks to ensure security and must be tested in a manufacturing process to guarantee their quality. Therefore, a scan architecture is widely used for testing the circuits in the manufacturing test to improve testability. However, during scan testing, test-power consumption becomes more serious as the number of transistors and the complexity of chips increase. Hence, the scan chain reordering method is widely applied in a low-power architecture because of its ability to achieve high power reduction with a simple architecture. However, achieving a significant power reduction without excessive computational time remains challenging. In this paper, a novel scan correlation-aware scan cluster reordering is proposed to solve this problem. The proposed method uses a new scan correlation-aware clustering in order to place highly correlated scan cells adjacent to each other. The experimental results demonstrate that the proposed method achieves a significant power reduction with a relatively fast computational time compared with previous methods. Therefore, by improving the reliability of cryptography circuits in wireless sensor networks (WSNs) through significant test-power reduction, the proposed method can ensure the security and integrity of information in WSNs.


Author(s):  
A. Zjajo ◽  
Henk Jan Bergveld ◽  
R. Schuttert ◽  
J. Pineda de Gyvez
Keyword(s):  

2011 ◽  
Vol 301-303 ◽  
pp. 989-994
Author(s):  
Fei Wang ◽  
Da Wang ◽  
Hai Gang Yang

Scan chain design is a widely used design-for-testability (DFT) technique to improve test and diagnosis quality. However, failures on scan chain itself account for up to 30% of chip failures. To diagnose root causes of scan chain failures in a short period is vital to failure analysis process and yield improvements. As the conventional diagnosis process usually runs on the faulty free scan chain, scan chain faults may disable the diagnostic process, leaving large failure area to time-consuming failure analysis. In this paper, a SAT-based technique is proposed to generate patterns to diagnose scan chain faults. The proposed work can efficiently generate high quality diagnostic patterns to achieve high diagnosis resolution. Moreover, the computation overhead of proving equivalent faults is reduced. Experimental results on ISCAS’89 benchmark circuits show that the proposed method can reduce the number of diagnostic patterns while achieving high diagnosis resolution.


Author(s):  
Christian Zoellin ◽  
Hans-joachim Wunderlich ◽  
Nicolas Maeding ◽  
Jens Leenstra

Sign in / Sign up

Export Citation Format

Share Document