Maximal possible accretion rates for slim disks

2009 ◽  
Vol 52 (12) ◽  
pp. 2054-2058
Author(s):  
YiQing Lin ◽  
ChengLiang Jiao
Keyword(s):  
2018 ◽  
Vol 75 (11) ◽  
pp. 4031-4047 ◽  
Author(s):  
Yign Noh ◽  
Donggun Oh ◽  
Fabian Hoffmann ◽  
Siegfried Raasch

Abstract Cloud microphysics parameterizations for shallow cumulus clouds are analyzed based on Lagrangian cloud model (LCM) data, focusing on autoconversion and accretion. The autoconversion and accretion rates, A and C, respectively, are calculated directly by capturing the moment of the conversion of individual Lagrangian droplets from cloud droplets to raindrops, and it results in the reproduction of the formulas of A and C for the first time. Comparison with various parameterizations reveals the closest agreement with Tripoli and Cotton, such as and , where and are the mixing ratio and the number concentration of cloud droplets, is the mixing ratio of raindrops, is the threshold volume radius, and H is the Heaviside function. Furthermore, it is found that increases linearly with the dissipation rate and the standard deviation of radius and that decreases rapidly with while disappearing at > 3.5 μm. The LCM also reveals that and increase with time during the period of autoconversion, which helps to suppress the early precipitation by reducing A with smaller and larger in the initial stage. Finally, is found to be affected by the accumulated collisional growth, which determines the drop size distribution.


1997 ◽  
Vol 182 ◽  
pp. 391-405 ◽  
Author(s):  
Lee Hartmann

Outflows from low-mass young stellar objects are thought to draw upon the energy released by accretion onto T Tauri stars. I briefly summarize the evidence for this accretion and outline present estimates of mass accretion rates. Young stars show a very large range of accretion rates, and this has important implications for both mass ejection and for the structure of stellar magnetospheres which may truncate T Tauri disks.


2019 ◽  
Vol 486 (2) ◽  
pp. 2754-2765 ◽  
Author(s):  
A M Derdzinski ◽  
D D’Orazio ◽  
P Duffell ◽  
Z Haiman ◽  
A MacFadyen

Abstract The coalescence of a compact object with a $10^{4}\hbox{--}10^{7}\, {\rm M_\odot }$ supermassive black hole (SMBH) produces mHz gravitational waves (GWs) detectable by the future Laser Interferometer Space Antenna (LISA). If such an inspiral occurs in the accretion disc of an active galactic nucleus (AGN), the gas torques imprint a small deviation in the GW waveform. Here, we present two-dimensional hydrodynamical simulations with the moving-mesh code disco of a BH inspiraling at the GW rate in a binary system with a mass ratio q = M2/M1 = 10−3, embedded in an accretion disc. We assume a locally isothermal equation of state for the gas (with Mach number $\mathcal {M}=20$) and implement a standard α-prescription for its viscosity (with α = 0.03). We find disc torques on the binary that are weaker than in previous semi-analytic toy models, and are in the opposite direction: the gas disc slows down, rather than speeds up the inspiral. We compute the resulting deviations in the GW waveform, which scale linearly with the mass of the disc. The SNR of these deviations accumulates mostly at high frequencies, and becomes detectable in a 5 yr LISA observation if the total phase shift exceeds a few radians. We find that this occurs if the disc surface density exceeds $\Sigma _0 \gtrsim 10^{2-3}\rm g\, cm^{-2}$, as may be the case in thin discs with near-Eddington accretion rates. Since the characteristic imprint on the GW signal is strongly dependent on disc parameters, a LISA detection of an intermediate mass ratio inspiral would probe the physics of AGN discs and migration.


2011 ◽  
Vol 7 (S281) ◽  
pp. 186-189
Author(s):  
Koji Mukai ◽  
Jennifer L. Sokoloski ◽  
Thomas Nelson ◽  
Gerardo J. M. Luna

AbstractWe present recent results of quiescent X-ray observations of recurrent novae (RNe) and related objects. Several RNe are luminous hard X-ray sources in quiescence, consistent with accretion onto a near Chandrasekhar mass white dwarf. Detection of similar hard X-ray emissions in old novae and other cataclysmic variables may lead to identification of additional RNe candidates. On the other hand, other RNe are found to be comparatively hard X-ray faint. We present several scenarios that may explain this dichotomy, which should be explored further.


2021 ◽  
Vol 503 (2) ◽  
pp. 2973-2978
Author(s):  
G A Carvalho ◽  
S Pilling

ABSTRACT In this work, we analyse soft X-ray emission due to mass accretion on to compact stars and its effects on the time-scale to reach chemical equilibrium of eventual surrounding astrophysical ices exposed to that radiation. Reaction time-scales due to soft X-ray in water-rich and pure ices of methanol, acetone, acetonitrile, formic acid, and acetic acid were determined. For accretion rates in the range $\dot{m}=10^{-12}\!-\!10^{-8}\,{\rm M}_\odot$ yr−1 and distances in the range 1–3 LY from the central compact objects, the time-scales lie in the range 10–108 yr, with shorter time-scales corresponding to higher accretion rates. Obtained time-scales for ices at snow-line distances can be small when compared to the lifetime (or age) of the compact stars, showing that chemical equilibrium could have been achieved. Time-scales for ices to reach chemical equilibrium depend on X-ray flux and, hence, on accretion rate, which indicates that systems with low accretion rates may not have reached chemical equilibrium.


2018 ◽  
Vol 618 ◽  
pp. A149 ◽  
Author(s):  
Sol Alonso ◽  
Georgina Coldwell ◽  
Fernanda Duplancic ◽  
Valeria Mesa ◽  
Diego G. Lambas

Aims. With the aim of performing a suitable comparison of the internal process of galactic bars with respect to the external effect of interactions on driving gas toward the inner most region of the galaxies, we explored and compared the efficiency of both mechanisms on central nuclear activity in optically selected active galactic nuclei (AGNs) in spiral galaxies. Methods. We selected homogeneous samples of barred AGNs and active objects residing in pair systems, derived from the Sloan Digital Sky Survey (SDSS). In order to carry out a reliable comparison of both samples (AGNs in barred hosts in isolation and in galaxy pairs), we selected spiral AGN galaxies with similar distributions of redshift, magnitude, stellar mass, color and stellar age population from both catalogs. With the goal of providing an appropriate quantification of the influence of strong bars and interactions on nuclear activity, we also constructed a suitable control sample of unbarred spiral AGNs without a companion and with similar host properties to the other two samples. Results. We found that barred optically selected AGNs show an excess of nuclear activity (as derived from the Lum[OIII]) and accretion rate onto a central black hole (ℛ) with respect to AGNs in pairs. In addition, both samples show an excess of high values of Lum[OIII] and ℛ with respect to unbarred AGNs in the control sample. We also found that the fractions of AGNs with powerful nuclear activity and high accretion rates increase toward more massive hosts with bluer colors and younger stellar populations. Moreover, AGNs with bars exhibit a higher fraction of galaxies with powerful Lum[OIII] and efficient ℛ with respect to AGN galaxies inhabiting pair systems, in bins of different galaxy properties. Regarding AGNs belonging to pair systems, we found that the central nuclear activity is remarkably dependent on the galaxy pair companion features. The Lum[OIII] for AGNs in pairs is clearly enhanced when the galaxy companion exhibits a bright and more massive host with high metallicity, blue color, efficient star formation activity and young stellar population. The results of this work reveal an important capacity of both mechanisms, bars and interactions, to transport material towards the galaxy central regions. In this context, it should also be noted that the internal process of the bar is more efficient at improving the central nuclear activity in AGN objects than that corresponding to the external mechanism of the galaxy–galaxy interactions.


2018 ◽  
Vol 618 ◽  
pp. A119
Author(s):  
I. Mendigutía ◽  
C. J. Lada ◽  
R. D. Oudmaijer

Context. The star formation rate (SFR) linearly correlates with the amount of dense gas mass (Mdg) involved in the formation of stars both for distant galaxies and clouds in our Galaxy. Similarly, the mass accretion rate (Ṁacc) and the disk mass (Mdisk) of young, Class II stars are also linearly correlated. Aims. We aim to explore the conditions under which the previous relations could be unified. Methods. Observational values of SFR, Mdg, Ṁacc, and Mdisk for a representative sample of galaxies, star forming clouds, and young stars have been compiled from the literature. Data were plotted together in order to analyze how the rate of gas transformed into stars and the mass of dense gas directly involved in this transformation relate to each other over vastly different physical systems. Results. A statistically significant correlation is found spanning ~16 orders of magnitude in each axis, but with large scatter. This probably represents one of the widest ranges of any empirical correlation known, encompassing galaxies that are several kiloparsec in size, parsec-size star-forming clouds within our Galaxy, down to young, pre-main sequence stars with astronomical unit-size protoplanetary disks. Assuming that this global correlation has an underlying physical reason, we propose a bottom-up hypothesis suggesting that a relation between Ṁacc and the total circumstellar mass surrounding Class 0/I sources (Mcs; disk + envelope) drives the correlation in clouds that host protostars and galaxies that host clouds. This hypothesis is consistent with the fact that the SFRs derived for clouds over a timescale of 2 Myr can be roughly recovered from the sum of instantaneous accretion rates of the protostars embedded within them, implying that galactic SFRs averaged over ~10–100 Myr should be constant over this period too. Moreover, the sum of the circumstellar masses directly participating in the formation of the protostellar population in a cloud likely represents a non-negligible fraction of the dense gas mass within the cloud. Conclusions. If the fraction of gas directly participating in the formation of stars is ~1–35% of the dense gas mass associated with star-forming clouds and galaxies, then the global correlation for all scales has a near unity slope and an intercept consistent with the (proto-)stellar accretion timescale, Mcs/ Ṁacc. Therefore, an additional critical test of our hypothesis is that the Ṁacc−Mdisk correlation for Class II stars should also be observed between Ṁacc and Mcs for Class 0/I sources with similar slope and intercept.


2015 ◽  
Vol 812 (1) ◽  
pp. 66 ◽  
Author(s):  
Dohyeong Kim ◽  
Myungshin Im ◽  
Eilat Glikman ◽  
Jong-Hak Woo ◽  
Tanya Urrutia
Keyword(s):  

1999 ◽  
Vol 1999 ◽  
pp. 6-6
Author(s):  
J. Cameron ◽  
J. Wiseman ◽  
R. Webb ◽  
M.G. Hunter

Recent MLC survey data (Pig Year Book, 1995) reports that approximately 0.5 of annual first parity gilt cullings are due to reproductive failure. This high culling rate may be attributed to recent genetic selection for increased lean tissue accretion rates, and as a result a greater mature body weight. However, the gilt attains puberty and is thus mated at a lower age and as a consequence has not reached the target threshold of 35kg body protein mass at farrowing, suggested by Everts (1994),to be necessary for optimal reproductive performance. This, confounded with excessive tissue catabolism over lactation results in the attenuation of the gilt's potential protein accretion curve and hence reproductive failure (Foxcroft et al. 1995). The aim of this experiment was to study the effect of two protein accretion rates (maximum and 0.8 of maximum) on reproductive function in the gilt from 50kg liveweight to 3rd oestrus.


Sign in / Sign up

Export Citation Format

Share Document