An electrochemical immunosensor for simultaneous multiplexed detection of two lung cancer biomarkers using Au nanoparticles coated resin microspheres composed of L-tryptophan and caffeic acid

Ionics ◽  
2014 ◽  
Vol 21 (4) ◽  
pp. 1141-1152 ◽  
Author(s):  
Wenbo Lu ◽  
Lin Tao ◽  
Ying Wang ◽  
Xiaowei Cao ◽  
Juan Ge ◽  
...  
Talanta ◽  
2016 ◽  
Vol 156-157 ◽  
pp. 48-54 ◽  
Author(s):  
Simin Wu ◽  
Lifen Liu ◽  
Gong Li ◽  
Fengxiang Jing ◽  
Hongju Mao ◽  
...  

2010 ◽  
Vol 2 (9) ◽  
pp. 1236 ◽  
Author(s):  
Huan Li ◽  
Zhijuan Cao ◽  
Yuhao Zhang ◽  
Choiwan Lau ◽  
Jianzhong Lu

BMC Cancer ◽  
2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Brett C. Bade ◽  
Geliang Gan ◽  
Fangyong Li ◽  
Lingeng Lu ◽  
Lynn Tanoue ◽  
...  

Abstract Background Lung cancer survivors need more options to improve quality of life (QoL). It is unclear to what extent patients with advanced stage disease are willing to participate in home-based physical activity (PA) and if these interventions improve QoL. The goal of our study was to determine interest in participating in our 3-month home-based walking regimen in patients with advanced stage lung cancer. We used a randomized design to evaluate for potential benefit in PA and patient-reported outcomes. Methods We performed an open-label, 1:1 randomized trial in 40 patients with stage III/IV non-small cell lung cancer (NSCLC) evaluating enrollment rate, PA, QoL, dyspnea, depression, and biomarkers. Compared to usual care (UC), the intervention group (IG) received an accelerometer, in-person teaching session, and gain-framed text messages for 12 weeks. Results We enrolled 56% (40/71) of eligible patients. Participants were on average 65 years and enrolled 1.9 years from diagnosis. Most patients were women (75%), and receiving treatment (85%) for stage IV (73%) adenocarcinoma (83%). A minority of patients were employed part-time or full time (38%). Both groups reported low baseline PA (IG mean 37 (Standard deviation (SD) 46) vs UC 59 (SD 56) minutes/week; p = 0.25). The IG increased PA more than UC (mean change IG + 123 (SD 212) vs UC + 35 (SD 103) minutes/week; p = 0.051)). Step count in the IG was not statistically different between baseline (4707 step/day), week 6 (5605; p = 0.16), and week 12 (4606 steps/day; p = 0.87). The intervention improved EORTC role functioning domain (17 points; p = 0.022) with borderline improvement in dyspnea (− 13 points; p = 0.051) compared to UC. In patients with two blood samples (25%), we observed a significant increase in soluble PD-1 (219.8 (SD 54.5) pg/mL; p < 0.001). Conclusions Our pilot trial using a 3-month, home-based, mobile health intervention enrolled over half of eligible patients with stage III and IV NSCLC. The intervention increased PA, and may improve several aspects of QoL. We also identified potential biomarker changes relevant to lung cancer biology. Future research should use a larger sample to examine the effect of exercise on cancer biomarkers, which may mediate the association between PA and QoL. Clinical trial registration Clinicaltrials.gov (NCT03352245).


2017 ◽  
Vol 33 (1) ◽  
pp. 3-9 ◽  
Author(s):  
Yan Song ◽  
Xiuli Yu ◽  
Zongmei Zang ◽  
Guijuan Zhao

For both lung cancer patients and clinical physicians, tumor biomarkers for more efficient early diagnosis and prediction of prognosis are always wanted. Biomarkers in circulating serum, including microRNAs (miRNAs) and extracellular vesicles, hold the greatest possibilities to partially substitute for tissue biopsy. In this systematic review, studies on circulating or tissue miRNAs and extracellular vesicles as potential biomarkers for lung cancer patients were reviewed and are discussed. Furthermore, the target genes of the miRNAs indicated were identified through the miRTarBase, while the relevant biological processes and pathways of miRNAs in lung cancer were analyzed through MiRNA Enrichment Analysis and Annotation (MiEAA). In conclusion, circulating or tissue miRNAs and extracellular vesicles provide us with a window to explore strategies for diagnosing and assessing prognosis and treatment in lung cancer patients.


2013 ◽  
Vol 46 (10-11) ◽  
pp. 918-925 ◽  
Author(s):  
Ivan Vannini ◽  
Francesca Fanini ◽  
Muller Fabbri

2018 ◽  
Vol 48 (4) ◽  
pp. 1433-1442 ◽  
Author(s):  
Jie Min ◽  
Hua Shen ◽  
Wang Xi ◽  
Qing Wang ◽  
Liang Yin ◽  
...  

Background/Aims: Caffeic acid (CA) is known to possess multiple biological activities including anti-cancer activities. However, the molecular mechanisms underlying these activities in non-small-cell lung cancer (NSCLC) cells are not fully understood. We attempted to clarify whether CA could enhance paclitaxel (PTX)-induced cytotoxicity in H1299 cells. Methods: First, we tested the cytotoxic effects in both H1299 cells and normal human Bease-2b cells by cell proliferation experiments. Next, we use Annexin V/propidium iodide apoptosis analysis and flow cytometric analysis to investigate apoptosis and cell cycle arrest under the treatments mentioned above. To further pinpoint changes in apoptosis, we tested the caspase-associated apoptotic pathway, which involves the activities of caspase-3 and caspase-9. Moreover, apoptosis-related proteins and MAPK pathway proteins were examined by western blot. An H1299 xenograft nude mice model was used to further evaluate the tumor-suppressing effects of CA and PTX in vivo. Results: Combination treatment with low-dose CA and PTX decreased the proliferation of NSCLC H1299 cells but not normal Beas-2b cells. Flow cytometry showed that H1299 cells were arrested in the sub-G1 phase and apoptosis was significantly increased in H1299 cells after CA treatment. Caspase-3 and caspase-9 activities were both increased after CA treatment. Furthermore, CA increased the PTX-induced activation of Bax, Bid, and downstream cleaved PARP, and phosphorylation of extracellular signal regulated kinase1/2 and c-Jun NH2-terminal protein kinase1/2. An in vivo tumor-suppression assay demonstrated that CA and PTX combined treatment exerted a more effective suppressive effect on tumor growth in H1299 xenografts without causing significant adverse effects. Conclusions: Our results indicated that CA inhibited NSCLC H1299 cell growth by inducing apoptosis and CA and PTX combined produced a synergistic anti-cancer effect in H1299 cells.


2021 ◽  
Vol 39 (15_suppl) ◽  
pp. e21031-e21031
Author(s):  
Yataro Daigo ◽  
Atsushi Takano ◽  
Yusuke Nakamura

e21031 Background: Since the clinical outcome of advanced lung cancer patients is still poor after standard therapies, development of new anti-cancer drugs with minimum risk of adverse effects and cancer biomarkers for precision medicine is urgently required. Methods: We have been screening new therapeutic target molecules and molecular biomarkers for lung cancers as follows; i) To identify overexpressed genes in lung cancers by the gene expression profile analysis, ii) To verify the target genes for their scarce expression in normal tissues, iii) To validate the clinicopathologic importance of their protein expression by tissue microarray covering 263 lung cancers, and iv) To confirm their function for the growth and/or invasive ability of the lung cancer cells by siRNAs and gene transfection assays. Results: We identified dozens of candidate target molecules and selected a gene encoding protein with a GAP domain, LAPG1 (lung cancer-associated protein with Gap domain 1). Immunohistochemical analysis showed that LAPG1 expression was observed in 69.9% of lung cancers. Moreover positivity of LAPG1 expression was associated with poor prognosis of lung cancer patients. Knockdown of LAPG1 expression by siRNAs suppressed growth of lung cancer cells. Introduction of LAPG1 increased the invasive activity of mammalian cells, indicating that LAPG1 could be a prognostic biomarker and therapeutic target for lung cancers. Conclusions: Comprehensive cancer genomics-based screening could be useful for selection of new cancer biomarkers and molecular targets for developing small molecules, antibodies, nucleic acid drugs, and immunotherapies.


Sign in / Sign up

Export Citation Format

Share Document