Simple preparation of nano-anatase titanium dioxide from cold rolled titanic acid waste liquid

Ionics ◽  
2021 ◽  
Author(s):  
Zhicong Ni ◽  
Xiaoyuan Zeng ◽  
Xue Li ◽  
Guanghui Xia ◽  
Shanxiong Luo ◽  
...  
2014 ◽  
Vol 35 (8) ◽  
pp. 2477-2480 ◽  
Author(s):  
Ji Hyuk Im ◽  
Eunyoung Kang ◽  
Seung Jae Yang ◽  
Hye Jeong Park ◽  
Jaheon Kim ◽  
...  

2009 ◽  
Vol 63 (2) ◽  
Author(s):  
Peter Ševčík ◽  
Gabriel Čík ◽  
Tomáš Vlna ◽  
Tomáš Mackul’ak

AbstractThe use of photocatalysts supported on adsorbents is receiving substantial attention. Supporting TiO2 with zeolites is found to be one of the best solutions to increase the efficiency of TiO2-based photocatalysts. This work was focused on simple preparation of a TiO2/Na-ZSM-5 composite catalyst by the solid state dispersion (SSD) method and its modification with an organic photosensitizer — polythiophene (PT). Using the XRD diffractometry, structure of the new composite catalyst was proved. Beside this composite catalyst, mechanical mixtures of TiO2-based catalysts with Na-ZSM-5 zeolite were prepared. The efficiency of all five available photocatalysts (TiO2, TiO2-PT, mechanical mixture of TiO2 + Na-ZSM-5, mechanical mixture of TiO2-PT + Na-ZSM-5, and the modified SSD-PT composite) on photodegradation of 4-chlorophenol was compared. By measuring the formation of chloride ions and decreasing the 4-chlorophenol concentration at two different initial concentrations of 4-chlorophenol in the basic aqueous solution, the photoefficiency and adsorption properties of our photocatalysts were determined.


2016 ◽  
Vol 75 (5) ◽  
pp. 1128-1137 ◽  
Author(s):  
Shen-Ming Chen ◽  
Norman Lu ◽  
Jun-Yu Chen ◽  
Cheng-Yu Yang ◽  
Yun-Peng Yeh ◽  
...  

Simply coating 1 wt.% of platinum on titanium dioxide (TiO2) surface resulted in simple preparation of platinized TiO2 (Pt-TiO2). This study demonstrated the photodegradation of atrazine (ATZ) using either Pt-TiO2 or TiO2 as a photocatalyst under 352 nm light irradiation. The Pt-TiO2-catalyzed ATZ degradation reached 76% in 3 hours without adding H2O2 solution or aeration, which was more than 10% higher than the TiO2-catalyzed reaction. The decomposition product of Pt-TiO2-catalyzed ATZ degradation was mainly cyanuric acid. Thus, Pt-TiO2 as an effective photocatalyst has three main advantages in the photodegradation of ATZ under 352 nm irradiation. First, the coated Pt can facilitate the generation of appropriate amounts of OH radicals, so it can prevent the formation of over-oxidized TiO2. Second, aeration was not needed. Third, the excited electrons were mainly uni-directionally transferred to the catalyst surface to avoid recombination of electron-hole pairs.


2013 ◽  
Vol 747 ◽  
pp. 35-38 ◽  
Author(s):  
Cheng Ming Chang ◽  
Jui Ming Yeh

This article, the preparation and corrosion protection studies of a series of electroactive epoxy titanium dioxide (EET) hybrid materials containing conjugated segments of electroactive amino-capped aniline trimer (ACAT) and titanium dioxide (TiO2) nanoparticles of ~100 nm in diameter was first presented. It should be noted that EET at higher concentration of TiO2 was found to reveal better corrosion protection effect as compared to neat electroactive epoxy coating on cold-rolled steel (CRS) electrode based on electrochemical corrosion measurements in 3.5 wt% NaCl electrolyte. Effective enhancement of corrosion protection of EET coatings could be interpreted by electroactive epoxy as a densely physical barrier coating and the redox catalytic capabilities of ACAT units existed in EET may induce the formation of passive metal oxide layers on CRS electrode. Further the well-dispersed TiO2 nanoparticles in EET matrix could act as effective hinder to enhance the oxygen barrier property of EET.


Author(s):  
Shiro Fujishiro ◽  
Harold L. Gegel

Ordered-alpha titanium alloys having a DO19 type structure have good potential for high temperature (600°C) applications, due to the thermal stability of the ordered phase and the inherent resistance to recrystallization of these alloys. Five different Ti-Al-Ga alloys consisting of equal atomic percents of aluminum and gallium solute additions up to the stoichiometric composition, Ti3(Al, Ga), were used to study the growth kinetics of the ordered phase and the nature of its interface.The alloys were homogenized in the beta region in a vacuum of about 5×10-7 torr, furnace cooled; reheated in air to 50°C below the alpha transus for hot working. The alloys were subsequently acid cleaned, annealed in vacuo, and cold rolled to about. 050 inch prior to additional homogenization


Author(s):  
Toshihiko Takita ◽  
Tomonori Naguro ◽  
Toshio Kameie ◽  
Akihiro Iino ◽  
Kichizo Yamamoto

Recently with the increase in advanced age population, the osteoporosis becomes the object of public attention in the field of orthopedics. The surface topography of the bone by scanning electron microscopy (SEM) is one of the most useful means to study the bone metabolism, that is considered to make clear the mechanism of the osteoporosis. Until today many specimen preparation methods for SEM have been reported. They are roughly classified into two; the anorganic preparation and the simple preparation. The former is suitable for observing mineralization, but has the demerit that the real surface of the bone can not be observed and, moreover, the samples prepared by this method are extremely fragile especially in the case of osteoporosis. On the other hand, the latter has the merit that the real information of the bone surface can be obtained, though it is difficult to recognize the functional situation of the bone.


Author(s):  
H. Lin ◽  
D. P. Pope

During a study of mechanical properties of recrystallized B-free Ni3Al single crystals, regularly spaced parallel traces within individual grains were discovered on the surfaces of thin recrystallized sheets, see Fig. 1. They appeared to be slip traces, but since we could not find similar observations in the literature, a series of experiments was performed to identify them. We will refer to them “traces”, because they contain some, if not all, of the properties of slip traces. A variety of techniques, including the Electron Backscattering Pattern (EBSP) method, was used to ascertain the composition, geometry, and crystallography of these traces. The effect of sample thickness on their formation was also investigated.In summary, these traces on the surface of recrystallized Ni3Al have the following properties:1.The chemistry and crystallographic orientation of the traces are the same as the bulk. No oxides or other second phases were observed.2.The traces are not grooves caused by thermal etching at previous locations of grain boundaries.3.The traces form after recrystallization (because the starting Ni3Al is a single crystal).4.For thicknesses between 50 μm and 720 μm, the density of the traces increases as the sample thickness decreases. Only one set of “protrusion-like” traces is visible in a given grain on the thicker samples, but multiple sets of “cliff-like” traces are visible on the thinner ones (See Fig. 1 and Fig. 2).5.They are linear and parallel to the traces of {111} planes on the surface, see Fig. 3.6.Some of the traces terminate within the interior of the grains, and the rest of them either terminate at or are continuous across grain boundaries. The portion of latter increases with decreasing thickness.7.The grain size decreases with decreasing thickness, the decrease is more pronounced when the grain size is comparable with the thickness, Fig. 4.8.Traces also formed during the recrystallization of cold-rolled polycrystalline Cu thin sheets, Fig. 5.


2009 ◽  
Vol 00 (00) ◽  
pp. 090915102728058-8
Author(s):  
Yoshiteru Kato ◽  
Yasuhiko Nakashima ◽  
Naoki Shino ◽  
Koichi Sasaki ◽  
Akihiro Hosokawa ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document