scholarly journals Erratum to: Promotion of chondrogenesis of marrow stromal stem cells by TGF-β3 fusion protein In Vivo

2017 ◽  
Vol 37 (6) ◽  
pp. 983-983
Author(s):  
Wei Wu ◽  
Yang Dan ◽  
Shu-hua Yang ◽  
Cao Yang ◽  
Zeng-wu Shao ◽  
...  
2020 ◽  
Vol 16 (2) ◽  
pp. 276-287 ◽  
Author(s):  
Alexia Karamini ◽  
Athina Bakopoulou ◽  
Dimitrios Andreadis ◽  
Konstantinos Gkiouras ◽  
Aristeidis Kritis

2020 ◽  
Vol 9 (2) ◽  
pp. 310 ◽  
Author(s):  
David Alfaro ◽  
Mariano R. Rodríguez-Sosa ◽  
Agustín G. Zapata

Mesenchymal stromal/stem cells (MSCs) have emerged as important therapeutic agents, owing to their easy isolation and culture, and their remarkable immunomodulatory and anti-inflammatory properties. However, MSCs constitute a heterogeneous cell population which does not express specific cell markers and has important problems for in vivo homing, and factors regulating their survival, proliferation, and differentiation are largely unknown. Accordingly, in the present article, we review the current evidence on the relationships between Eph kinase receptors, their ephrin ligands, and MSCs. These molecules are involved in the adult homeostasis of numerous tissues, and we and other authors have demonstrated their expression in human and murine MSCs derived from both bone marrow and adipose tissue, as well as their involvement in the MSC biology. We extend these studies providing new results on the effects of Eph/ephrins in the differentiation and immunomodulatory properties of MSCs.


2010 ◽  
Vol 16 (7) ◽  
pp. 2331-2342 ◽  
Author(s):  
Jorge S. Burns ◽  
Pernille L. Rasmussen ◽  
Kenneth H. Larsen ◽  
Henrik Daa Schrøder ◽  
Moustapha Kassem

2018 ◽  
Vol 2018 ◽  
pp. 1-16 ◽  
Author(s):  
Ross E. B. Fitzsimmons ◽  
Matthew S. Mazurek ◽  
Agnes Soos ◽  
Craig A. Simmons

As a result of over five decades of investigation, mesenchymal stromal/stem cells (MSCs) have emerged as a versatile and frequently utilized cell source in the fields of regenerative medicine and tissue engineering. In this review, we summarize the history of MSC research from the initial discovery of their multipotency to the more recent recognition of their perivascular identity in vivo and their extraordinary capacity for immunomodulation and angiogenic signaling. As well, we discuss long-standing questions regarding their developmental origins and their capacity for differentiation toward a range of cell lineages. We also highlight important considerations and potential risks involved with their isolation, ex vivo expansion, and clinical use. Overall, this review aims to serve as an overview of the breadth of research that has demonstrated the utility of MSCs in a wide range of clinical contexts and continues to unravel the mechanisms by which these cells exert their therapeutic effects.


2021 ◽  
Vol 2021 ◽  
pp. 1-23
Author(s):  
Jamie Mollentze ◽  
Chrisna Durandt ◽  
Michael S. Pepper

The use of stem cells in regenerative medicine, including tissue engineering and transplantation, has generated a great deal of enthusiasm. Mesenchymal stromal/stem cells (MSCs) can be isolated from various tissues, most commonly, bone marrow but more recently adipose tissue, dental pulp, and Wharton’s jelly, to name a few. MSCs display varying phenotypic profiles and osteogenic differentiating capacity depending and their site of origin. MSCs have been successfully differentiated into osteoblasts both in vitro an in vivo but discrepancies exist when the two are compared: what happens in vitro does not necessarily happen in vivo, and it is therefore important to understand why these differences occur. The osteogenic process is a complex network of transcription factors, stimulators, inhibitors, proteins, etc., and in vivo experiments are helpful in evaluating the various aspects of this osteogenic process without distractions and confounding variables. With that in mind, the results of in vitro experiments need to be carefully considered and interpreted with caution as they do not perfectly replicate the conditions found within living organisms. This is where in vivo experiments help us better understand interactions that might occur in the osteogenic process that cannot be replicated in vitro. Potentially, these differences could also be exploited to develop an optimal MSC cell therapeutic product that can be used for bone disorders. There are many bone disorders, most of which cause a great deal of discomfort. Clinically acceptable protocols could be developed in which MSCs are used to aid in bone regeneration providing relief for patients with chronic pain. The aim of this review is to examine the differences between studies conducted in vitro and in vivo with regard to the osteogenic process to better define the gaps in current osteogenic research. By better understanding osteogenic differentiation, we can better define treatment strategies for various bone disorders.


2022 ◽  
Vol 23 (2) ◽  
pp. 863
Author(s):  
Alessia Gallo ◽  
Nicola Cuscino ◽  
Flavia Contino ◽  
Matteo Bulati ◽  
Mariangela Pampalone ◽  
...  

Mesenchymal stromal/stem cells (MSCs) are believed to function in vivo as a homeostatic tool that shows therapeutic properties for tissue repair/regeneration. Conventionally, these cells are expanded in two-dimensional (2D) cultures, and, in that case, MSCs undergo genotypic/phenotypic changes resulting in a loss of their therapeutic capabilities. Moreover, several clinical trials using MSCs have shown controversial results with moderate/insufficient therapeutic responses. Different priming methods were tested to improve MSC effects, and three-dimensional (3D) culturing techniques were also examined. MSC spheroids display increased therapeutic properties, and, in this context, it is crucial to understand molecular changes underlying spheroid generation. To address these limitations, we performed RNA-seq on human amnion-derived MSCs (hAMSCs) cultured in both 2D and 3D conditions and examined the transcriptome changes associated with hAMSC spheroid formation. We found a large number of 3D culture-sensitive genes and identified selected genes related to 3D hAMSC therapeutic effects. In particular, we observed that these genes can regulate proliferation/differentiation, as well as immunomodulatory and angiogenic processes. We validated RNA-seq results by qRT-PCR and methylome analysis and investigation of secreted factors. Overall, our results showed that hAMSC spheroid culture represents a promising approach to cell-based therapy that could significantly impact hAMSC application in the field of regenerative medicine.


Author(s):  
Erica Ferrini ◽  
Fabio Franco Stellari ◽  
Valentina Franceschi ◽  
Francesca Macchi ◽  
Luca Russo ◽  
...  

Mesenchymal stromal/stem cells (MSCs) are a fibroblast-like cell population with high regenerative potential that can be isolated from many different tissues. Several data suggest MSCs as a therapeutic tool capable of migrating to a site of injury and guide tissue regeneration mainly through their secretome. Pulmonary first-pass effect occurs during intravenous administration of MSCs, where 50 to 80% of the cells tend to localize in the lungs. This phenomenon has been exploited to study MSC potential therapeutic effects in several preclinical models of lung diseases. Data demonstrated that, regardless of the lung disease severity and the delivery route, MSCs were not able to survive longer than 24 h in the respiratory tract but still surprisingly determined a therapeutic effect. In this work, two different mouse bone marrow-derived mesenchymal stromal/stem cell (mBM-MSC) lines, stably transduced with a third-generation lentiviral vector expressing luciferase and green fluorescent protein reporter genes tracking MSCs in vivo biodistribution and persistency, have been generated. Cells within the engrafted lung were in vivo traced using the high-throughput bioluminescence imaging (BLI) technique, with no invasiveness on animal, minimizing biological variations and costs. In vivo BLI analysis allowed the detection and monitoring of the mBM-MSC clones up to 28 days after implantation independently from the delivery route. This longer persistency than previously observed (24 h) could have a strong impact in terms of pharmacokinetics and pharmacodynamics of MSCs as a therapeutic tool.


Blood ◽  
2016 ◽  
Vol 128 (22) ◽  
pp. 3384-3384
Author(s):  
Satoshi Yoshioka ◽  
Yasuo Miura ◽  
Masaki Iwasa ◽  
Aya Fujishiro ◽  
Noriko Sugino ◽  
...  

Abstract Mesenchymal stromal/stem cells (MSCs) are a major source of cell for cell therapy. MSCs derived from bone marrow (BMMSCs) have been mostly used in clinical applications. BMMSCs can be easily isolated as a cell population that adheres to plastic culture dishes within 1 week of culture. A recent report has demonstrated that cells that remain in suspension and fail to form adherent colonies contain a fraction of late adherent cells that resembles BMMSCs (Biomed Res Int, 2013; 2013: 790842). Umbilical cord blood (UCB) is as accessible as bone marrow for the isolation of MSCs. In this study, we identified a late adherent subpopulation in UCB and determined its hematopoiesis-supporting activity. Forty-five UCB units, which were not matched to the eligibility criterion defined in the Japan UCB donation program, were collected after delivery of placenta. Written informed consent was obtained before delivery from all pregnant women who participated in the study. The study protocol was approved by the ethics committee of the Kyoto University Graduate School of Medicine. Mononuclear cells were isolated from UCB by the density gradient centrifugation method with (n = 19) and without (n = 18) subsequent separation of CD34 negative cells using anti-CD34 immunomagnetic microbeads (Miltenyi Biotec, Bergisch Gladbach, Germany). Nucleated cells were separated by the hydroxyethyl starch sedimentation method from the other eight UCB units. The cells were then seeded into a culture flask and cultured in alpha minimal essential medium supplemented with 15% FBS (Culture 1; C1). After 1 week of culture, non-adherent cells in C1 supernatant were collected and re-seeded into a new flask (C2). The attached cells in C1 were cultured until adherent colonies emerged, after which they were detached using trypsin/EDTA and twice passaged to obtain a sufficient number of cells (C1 cells). In the same way, after 1 week of culture, non-adherent cells in C2 supernatant were collected and re-seeded into a new flask (C3). The attached cells in C2 were cultured to obtain C2 cells. Afterwards, re-seeding and culture (C4, C5c) were repeated until no new colonies were formed. Collected cells were cryopreserved and thawed when required in experiments. BMMSCs were isolated from human bone marrow cells purchased from AllCells (Emeryville, CA). C1 cells, the so-called UCBMSCs, were successfully isolated from 18 units (40 %). Adherent cells isolated from C2 and later were defined as elate adherent cellsf and, were obtained from 9 units: these cells were referred to as C2 cells (from 9 units), C3 cells (from 9 units), C4 cells (from 6 units) and C5 cells (from 2 units). The interval from seeding to the first colony formation in C1 was shorter in these 9 units than that in the other 9 units that contained only C1 cells: 10.8 } 1.4 vs 15.9 } 4.5 days, p < 0.01. The volume of the former 9 units tended to be large compared to the latter 9 units: 49.6 } 10.5 vs 33.7 } 21.0 mL, p = 0.07. These findings indicated that UCB containing late adherent cells was suitable for a cell source of MSCs. Next, we examined whether these late adherent cells (C2 and C3 cells) had properties consistent with those of MSCs. Both C2 and C3 cells showed spindle-shaped fibroblast-like morphology and the same immunophenotype as C1 cells: positive for CD73, CD90 and CD105, and negative for CD34, CD45 and HLA-DR. They had osteogenic, adipogenic and chondrogenic differentiation potentials in vitro. These findings are the minimal criteria for MSCs (Cytotherapy, 2006; 8:315). Finally, we evaluated the hematopoiesis-supporting activity of these cells in vitro and in vivo. CD45-positive hematopoietic cells were expanded when co-cultured of CD34-positive hematopoietic progenitor cells (6 ~ 102 cells) with C2 or C3 cells (2 ~ 104 cells) in vitro as much as when co-cultured with C1 cells (Figure A). In vivo analysis was conducted by using subcutaneous transplantation of MSCs on NOD/SCID mice (Int J Hematol, 2015; 102: 218). C2 cells induced trabecular bone formation and bone marrow hematopoiesis as well as C1 cells, however, C3 cells did not induce hematopoiesis (Figure B). In conclusion, we demonstrated that UCB contains a late adherent cell subpopulation with the same characteristics and hematopoiesis-supporting activity as those of UCBMSCs isolated using the conventional method. The continuance of cell culture without discarding suspension cells could improve the efficiency of isolation of MSCs from UCB. Disclosures Hirai: Kyowa Hakko Kirin: Research Funding; Novartis Pharma: Research Funding. Maekawa:Bristol-Myers K.K.: Research Funding.


Author(s):  
Wei Wu ◽  
Yang Dan ◽  
Shu-hua Yang ◽  
Cao Yang ◽  
Zeng-wu Shao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document