Development and evaluation of a porcine in vitro colon organ culture technique

2016 ◽  
Vol 52 (9) ◽  
pp. 942-952 ◽  
Author(s):  
Matheus O. Costa ◽  
John C. S. Harding ◽  
Janet E. Hill
2017 ◽  
Vol 31 (1-2) ◽  
pp. 17-24
Author(s):  
Hari Prasad Aryal

 The technique of in vitro propagation of Arbuscular mycorrhizal fungi has been developed over the past few decades and opens up areas of studying plant-fungi interactions. It is a scientific break through, especially for the study of the Arbuscular mycorrhizal fungi, since these obligate symbionts depend on host plant. The objective of this paper is to find out the in vitro culture of Arbuscular Mycorrhizal Fungi using Root Organ Culture technique. Ascertain of root colonization of these fungi could be affected in vitro without undertaking complex and complicated culture conditions. This could form an economically viable technique for root organ culture of Arbuscular mycorrhizal fungi.


Author(s):  
Tetsuhiro Yokonishi ◽  
Takuya Sato ◽  
Kumiko Katagiri ◽  
Takehiko Ogawa

1971 ◽  
Vol 68 (1_Suppl) ◽  
pp. S27-S40 ◽  
Author(s):  
T. Kobayashi ◽  
T. Kigawa ◽  
M. Mizuno ◽  
T. Watanabe

ABSTRACT There are several in vitro methods to analyse the function of the adenohypophysis or the mechanisms of its regulation. The present paper deals with single cell culture, organ culture and short term incubation techniques by which the morphology and gonadotrophin-secreting function of the adenohypophysis were studied. In trypsin-dispersed cell culture, the adenohypophysial cells showed extensive propagation to form numerous cell colonies and finally develop into a confluent monolayer cell sheet covering completely the surface of culture vessels. Almost all of the cultured cells, however, became chromophobic, at least at the end of the first week of cultivation, when gonadotrophin was detectable neither in the culture medium nor in the cells themselves. After the addition of the hypothalamic extract, gonadotrophin became detectable again, and basophilic or PAS-positive granules also reappeared within the cells, suggesting that the gonadotrophs were stimulated by the extract to produce gonadotrophin. In organ culture and short term incubation, the incorporation of [3H] leucine into the adenohypophysial cells in relation to the addition of hypothalamic extract was examined. It was obvious that the ability to incorporate [3H] leucine into the gonadotrophs in vitro was highly dependent upon the presence of the hypothalamic extract.


2021 ◽  
Vol 11 (4) ◽  
pp. 1694
Author(s):  
Amna Komal Khan ◽  
Sidra Kousar ◽  
Duangjai Tungmunnithum ◽  
Christophe Hano ◽  
Bilal Haider Abbasi ◽  
...  

Flavonoids represent a popular class of industrially important bioactive compounds. They possess valuable health-benefiting and disease preventing properties, and therefore they are an important component of the pharmaceutical, nutraceutical, cosmetical and medicinal industries. Moreover, flavonoids possess significant antiallergic, antihepatotoxic, anti-inflammatory, antioxidant, antitumor, antiviral, and antibacterial as well as cardio-protective activities. Due to these properties, there is a rise in global demand for flavonoids, forming a significant part of the world market. However, obtaining flavonoids directly from plants has some limitations, such as low quantity, poor extraction, over-exploitation, time consuming process and loss of flora. Henceforth, there is a shift towards the in vitro production of flavonoids using the plant tissue culture technique to achieve better yields in less time. In order to achieve the productivity of flavonoids at an industrially competitive level, elicitation is a useful tool. The elicitation of in vitro cultures induces stressful conditions to plants, activates the plant defense system and enhances the accumulation of secondary metabolites in higher quantities. In this regard, nanoparticles (NPs) have emerged as novel and effective elicitors for enhancing the in vitro production of industrially important flavonoids. Different classes of NPs, including metallic NPs (silver and copper), metallic oxide NPs (copper oxide, iron oxide, zinc oxide, silicon dioxide) and carbon nanotubes, are widely reported as nano-elicitors of flavonoids discussed herein. Lastly, the mechanisms of NPs as well as knowledge gaps in the area of the nano-elicitation of flavonoids have been highlighted in this review.


1990 ◽  
Vol 18 (1_part_1) ◽  
pp. 243-250
Author(s):  
Dag Jenssen ◽  
Lennart Romert

To understand the cause of the biological effects of xenobiotic metabolism in mammals, investigators have traditionally performed animal experiments by comparing the results of biochemical methods, such as measurement of enzyme activity analysis of the metabolites produced, with the observed toxicological effect. This article deals with in vitro methods for genotoxicity combined with drug metabolising preparations at the organelle, cell or organ levels, as exemplified by microsome preparations, isolated cells/cell lines and organ perfusion systems, respectively. The advantage of some of these methods for studying metabolism-mediated mutagenicity is that the measured endpoint reflects not only the bioactivating phase I reactions, but also the detoxifying phase II reactions, and the transfer of the non-conjugated reactive metabolites to other cells and their ability to cause mutations in these cells. In vivo, all these events are important factors in the initiation of cancer. A mechanistic advantage of the methods for metabolism-mediated mutagenicity in vitro is that the relevance of the different steps in metabolism for the mutational events can seldom be investigated in an in vivo assay. Furthermore, human studies can easily be performed using the co-culture technique with isolated human cells or cell lines.


PLoS ONE ◽  
2018 ◽  
Vol 13 (2) ◽  
pp. e0192884 ◽  
Author(s):  
Hiroyuki Sanjo ◽  
Mitsuru Komeya ◽  
Takuya Sato ◽  
Takeru Abe ◽  
Kumiko Katagiri ◽  
...  

2011 ◽  
Vol 3 (3) ◽  
pp. 97-100
Author(s):  
Naimeh SHARIFMOGHADAM ◽  
Abbas SAFARNEJAD ◽  
Sayed Mohammad TABATABAEI

The Almond (Amygdalus communis) is one of the most important and oldest commercial nut crops, belonging to the Rosaceae family. Almond has been used as base material in pharmaceutical, cosmetic, hygienically and food industry. Propagation by tissue culture technique is the most important one in woody plants. In the current research, in vitro optimization of tissue culture and mass production of almond was investigated. In this idea, explants of actively growing shoots were collected and sterilized, then transferred to MS medium with different concentrations and combinations of plant growth regulators. The experiment was done in completely randomized blocks design, with 7 treatment and 30 replications. After 4 weeks, calli induction, proliferation, shoot length and number of shoot per explants were measured. Results showed that the best medium for shoot initiation and proliferation was MS + 0.5 mg/l IAA (Indol-3-Acetic Acid) + 1 mg/l BA (Benzyl Adenine). Autumn was the best season for collecting explants. The shoots were transferred to root induction medium with different concentrations of plant growth regulators. The best root induction medium was MS + 0.5 mg/l IBA (Indol Butyric Acid).


1994 ◽  
Vol 32 (3) ◽  
pp. 184-187 ◽  
Author(s):  
Stephen J. Fortunato ◽  
Ramkumar Menon ◽  
Kenneth F. Swan ◽  
Timothy W. Lyden
Keyword(s):  

1977 ◽  
Vol 74 (1) ◽  
pp. 11-21 ◽  
Author(s):  
M. WILKINSON ◽  
D. DE ZIEGLER ◽  
DANIELLE CASSARD ◽  
K. B. RUF

The effects of oestrogen priming on the sensitivity of the anterior pituitary gland to stimulation with gonadotrophin releasing hormone (GnRH) was investigated in immature female rats using a new organ culture technique. Hemipituitary glands obtained from animals primed with a single dose of oestradiol benzoate (OB; 20 μg/100 g body weight) released significantly more LH when pulsed with GnRH (4 nmol/l) than did control hemipituitary glands. This potentiating effect was detectable as early as 5 days after birth. After a second stimulation, LH secretion remained high. These results were compared with those obtained from animals treated to induce increased levels of endogenous oestrogen on day 26 of life. Thus, hemipituitary glands were obtained from animals given two injections of OB, an injection of pregnant mare serum gonadotrophin (PMSG) or a unilateral brain lesion placed in the basal hypothalamus. Pituitary tissue was stimulated as before with a pulse of GnRH. Two injections of OB enhanced the sensitivity to stimulation. Conversely, both PMSG and lesion treatment severely reduced the sensitivity to GnRH, although PMSG-treated and lesioned animals have been used as models for the study of ovulation.


Sign in / Sign up

Export Citation Format

Share Document