Studies of Metabolism Mediated Mutagenicity In Vitro

1990 ◽  
Vol 18 (1_part_1) ◽  
pp. 243-250
Author(s):  
Dag Jenssen ◽  
Lennart Romert

To understand the cause of the biological effects of xenobiotic metabolism in mammals, investigators have traditionally performed animal experiments by comparing the results of biochemical methods, such as measurement of enzyme activity analysis of the metabolites produced, with the observed toxicological effect. This article deals with in vitro methods for genotoxicity combined with drug metabolising preparations at the organelle, cell or organ levels, as exemplified by microsome preparations, isolated cells/cell lines and organ perfusion systems, respectively. The advantage of some of these methods for studying metabolism-mediated mutagenicity is that the measured endpoint reflects not only the bioactivating phase I reactions, but also the detoxifying phase II reactions, and the transfer of the non-conjugated reactive metabolites to other cells and their ability to cause mutations in these cells. In vivo, all these events are important factors in the initiation of cancer. A mechanistic advantage of the methods for metabolism-mediated mutagenicity in vitro is that the relevance of the different steps in metabolism for the mutational events can seldom be investigated in an in vivo assay. Furthermore, human studies can easily be performed using the co-culture technique with isolated human cells or cell lines.

2021 ◽  
Vol 22 (19) ◽  
pp. 10247
Author(s):  
Hao-Yu Chuang ◽  
Li-Yun Hsu ◽  
Chih-Ming Pan ◽  
Narpati Wesa Pikatan ◽  
Vijesh Kumar Yadav ◽  
...  

Background: Glioblastoma (GBM) is the most common primary malignant brain tumor in adults. It is highly resistant to chemotherapy, and tumor recurrence is common. Neuronal precursor cell-expressed developmentally downregulated 4-1 (NEDD4-1) is an E3 ligase that controls embryonic development and animal growth. NEDD4-1 regulates the tumor suppressor phosphatase and tensin homolog (PTEN), one of the major regulators of the PI3K/AKT/mTOR signaling axis, as well as the response to oxidative stress. Methods: The expression levels of NEDD4-1 in GBM tissues and different cell lines were determined by quantitative real-time polymerase chain reaction and immunohistochemistry. In vitro and in vivo assays were performed to explore the biological effects of NEDD4-1 on GBM cells. Temozolomide (TMZ)-resistant U87MG and U251 cell lines were specifically established to determine NEDD4-1 upregulation and its effects on the tumorigenicity of GBM cells. Subsequently, miRNA expression in TMZ-resistant cell lines was investigated to determine the dysregulated miRNA underlying the overexpression of NEDD4-1. Indole-3-carbinol (I3C) was used to inhibit NEDD4-1 activity, and its effect on chemoresistance to TMZ was verified. Results: NEDD4-1 was significantly overexpressed in the GBM and TMZ-resistant cells and clinical samples. NEDD4-1 was demonstrated to be a key oncoprotein associated with TMZ resistance, inducing oncogenicity and tumorigenesis of TMZ-resistant GBM cells compared with TMZ-responsive cells. Mechanistically, TMZ-resistant cells exhibited dysregulated expression of miR-3129-5p and miR-199b-3p, resulting in the induced NEDD4-1 mRNA-expression level. The upregulation of NEDD4-1 attenuated PTEN expression and promoted the AKT/NRF2/HO-1 oxidative stress signaling axis, which in turn conferred amplified defense against reactive oxygen species (ROS) and eventually higher resistance against TMZ treatment. The combination treatment of I3C, a known inhibitor of NEDD4-1, with TMZ resulted in a synergistic effect and re-sensitized TMZ-resistant tumor cells both in vitro and in vivo. Conclusions: These findings demonstrate the critical role of NEDD4-1 in regulating the redox imbalance in TMZ-resistant GBM cells via the degradation of PTEN and the upregulation of the AKT/NRF2/HO-1 signaling pathway. Targeting this regulatory axis may help eliminate TMZ-resistant glioblastoma.


2021 ◽  
Author(s):  
Naoki Nohira ◽  
Sayaka Shinji ◽  
Shunichi Nakamura ◽  
Yuma Nihashi ◽  
Takeshi Shimosato ◽  
...  

Background: Embryonal rhabdomyosarcoma (ERMS) is the muscle-derived tumor retaining myogenic ability. iSN04 and AS1411, which are myogenetic oligodeoxynucleotides (myoDNs) serving as anti-nucleolin aptamers, have been reported to inhibit the proliferation and induce the differentiation of myoblasts. The present study investigated the effects of iSN04 and AS1411 on the growth of multiple ERMS1 cell lines in vitro. Methods: Three patient-derived ERMS cell lines, ERMS1, KYM1, and RD, were used. Nucleolin expression and localization in these cells was confirmed by immunostaining. The effects of iSN04 or AS1411 on the growth of ERMS cells were examined by cell counting, EdU staining, quantitative RT-PCR (qPCR), and three-dimensional culture of tumorspheres. Results: In all ERMS cell lines, nucleolin was abundantly expressed, and localized and concentrated in nucleoli, similar to myoblasts. Both iSN04 and AS1411 (10-30 μM) significantly decreased the number of all ERMS cells; however, their optimal conditions were different among the cell lines. iSN04 (10 μM) markedly reduced the ratio of EdU+ cells, indicating the inhibition of cell proliferation. qPCR demonstrated that iSN04 suppressed the cell cycle, partially promoted myogenesis, but did not induce apoptosis. Finally, both iSN04 and AS1411 (10-30 μM) disrupted the formation and outgrowth of RD tumorspheres mimicking in vivo tumorigenesis. Conclusions: ERMS cells expressed nucleolin, and their growth was inhibited by the anti-nucleolin aptamers, iSN04 and AS1411. The present study provides the first evidence that anti-nucleolin aptamers can be used as nucleic acid drugs for chemotherapy against ERMS.


Biomolecules ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 107
Author(s):  
Giorgio Santoni ◽  
Consuelo Amantini ◽  
Federica Maggi ◽  
Oliviero Marinelli ◽  
Matteo Santoni ◽  
...  

Multiple myeloma (MM) is a haematological B cell malignancy characterised by clonal proliferation of plasma cells and their accumulation in the bone marrow. The aim of the present study is the evaluation of biological effects of Ibrutinib in human MM cell lines alone or in combination with different doses of Bortezomib. In addition, the relationship between the expression of TRPML2 channels and chemosensitivity of different MM cell lines to Ibrutinib administered alone or in combination with Bortezomib has been evaluated. By RT-PCR and Western blot analysis, we found that the Ibrutinib-resistant U266 cells showed lower TRPML2 expression, whereas higher TRPML2 mRNA and protein levels were evidenced in RPMI cells. Moreover, TRPML2 gene silencing in RPMI cells markedly reverted the effects induced by Ibrutinib alone or in combination with Bortezomib suggesting that the sensitivity to Ibrutinib is TRPML2 mediated. In conclusion, this study suggests that the expression of TRPML2 in MM cells increases the sensitivity to Ibrutinib treatment, suggesting for a potential stratification of Ibrutinib sensitivity of MM patients on the basis of the TRPML2 expression. Furthermore, studies in vitro and in vivo should still be necessary to completely address the molecular mechanisms and the potential role of TRPML2 channels in therapy and prognosis of MM patients.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Yun-ping Hu ◽  
Yun-peng Jin ◽  
Xiang-song Wu ◽  
Yang Yang ◽  
Yong-sheng Li ◽  
...  

Abstract Backgrounds Long non-coding RNAs (lncRNAs) are essential factors that regulate tumor development and metastasis via diverse molecular mechanisms in a broad type of cancers. However, the pathological roles of lncRNAs in gallbladder carcinoma (GBC) remain largely unknown. Here we discovered a novel lncRNA termed lncRNA Highly expressed in GBC (lncRNA-HGBC) which was upregulated in GBC tissue and aimed to investigate its role and regulatory mechanism in the development and progression of GBC. Methods The expression level of lncRNA-HGBC in GBC tissue and different cell lines was determined by quantitative real-time PCR. The full length of lncRNA-HGBC was obtained by 5′ and 3′ rapid amplification of the cDNA ends (RACE). Cellular localization of lncRNA-HGBC was detected by fluorescence in situ hybridization (FISH) assays and subcellular fractionation assay. In vitro and in vivo assays were preformed to explore the biological effects of lncRNA-HGBC in GBC cells. RNA pull-down assay, mass spectrometry, and RNA immunoprecipitation (RIP) assay were used to identify lncRNA-HGBC-interacting proteins. Dual luciferase reporter assays, AGO2-RIP, and MS2-RIP assays were performed to verify the interaction between lncRNA-HGBC and miR-502-3p. Results We found that lncRNA-HGBC was upregulated in GBC and its upregulation could predict poor survival. Overexpression or knockdown of lncRNA-HGBC in GBC cell lines resulted in increased or decreased, respectively, cell proliferation and invasion in vitro and in xenografted tumors. LncRNA-HGBC specifically bound to RNA binding protein Hu Antigen R (HuR) that in turn stabilized lncRNA-HGBC. LncRNA-HGBC functioned as a competitive endogenous RNA to bind to miR-502-3p that inhibits target gene SET. Overexpression, knockdown or mutation of lncRNA-HGBC altered the inhibitory effects of miR-502-3p on SET expression and downstream activation of AKT. Clinically, lncRNA-HGBC expression was negatively correlated with miR-502-3p, but positively correlated with SET and HuR in GBC tissue. Conclusions Our study demonstrates that lncRNA-HGBC promotes GBC metastasis via activation of the miR-502-3p-SET-AKT cascade, pointing to lncRNA-HGBC as a new prognostic predictor and a therapeutic target.


2019 ◽  
Vol 8 (6) ◽  
pp. 1016-1027 ◽  
Author(s):  
Lars Leibrock ◽  
Sandra Wagener ◽  
Ajay Vikram Singh ◽  
Peter Laux ◽  
Andreas Luch

Abstract Inhalation is the most relevant entry point for nanoparticles (NPs) into the human body. To date, toxicity testing of nanomaterials in respect to oral, dermal and inhalative application is mainly based on animal experiments. The development of alternative test methods is the subject of current research. In vitro models can help to investigate mechanistic aspects, as e.g. cellular uptake or genotoxicity and might help to reduce in vivo testing. Lung cell lines are proper in vitro tools to assess NP toxicity. In respect to this, various cell models have been developed during the recent years, but often lack in a proper intact barrier function. However, besides other important in vivo criteria which are still missing like e.g. circulation, this is one basic prerequisite to come closer to the in vivo situation in certain mechanistic aspects such as particle translocation which is an important task for risk assessment of nanomaterials. Novel developed in vitro models may help to investigate the translocation of nanomaterials from the lung. We investigated the barrier function of the recently developed human lung cell lines CI-hAELVi and CI-huAEC. The cells were further exposed to CeO2 NPs and ZnO NPs, and their suitability as in vitro models for toxicological investigations was proven. The obtained data were compared with data generated with the A549 cell line. Measurement of transepithelial resistance and immunohistochemical examination of tight junctions confirmed the formation of a functional barrier for both cell lines for submerged and air–liquid cultivation. For particle exposure, hAELVi and huAEC cells showed comparable results to A549 cells without losing the barrier function. CeO2 NP exposure revealed no toxicity for all cell lines. In contrast, ZnO NPs was toxic for all cell lines at a concentration between 10–50 μg ml−1. Due to the comparable results to A549 cells CI-hAELVi and CI-huAEC offer new opportunities to investigate nanoparticle cell interactions more realistic than recent 2D cell models.


2019 ◽  
Vol 22 (4) ◽  
pp. 550-562 ◽  
Author(s):  
Caroline Capdevielle ◽  
Angélique Desplat ◽  
Justine Charpentier ◽  
Francis Sagliocco ◽  
Pierre Thiebaud ◽  
...  

Abstract Background Diffuse midline glioma (DMG) is a pediatric malignancy with poor prognosis. Most children die less than one year after diagnosis. Recently, mutations in histone H3 have been identified and are believed to be oncogenic drivers. Targeting this epigenetic abnormality using histone deacetylase (HDAC) inhibitors such as panobinostat (PS) is therefore a novel therapeutic option currently evaluated in clinical trials. Methods BH3 profiling revealed engagement in an irreversible apoptotic process of glioma cells exposed to PS confirmed by annexin-V/propidium iodide staining. Using proteomic analysis of 3 DMG cell lines, we identified 2 proteins deregulated after PS treatment. We investigated biological effects of their downregulation by silencing RNA but also combinatory effects with PS treatment in vitro and in vivo using a chick embryo DMG model. Electron microscopy was used to validate protein localization. Results Scaffolding proteins EBP50 and IRSp53 were upregulated by PS treatment. Reduction of these proteins in DMG cell lines leads to blockade of proliferation and migration, invasion, and an increase of apoptosis. EBP50 was found to be expressed in cytoplasm and nucleus in DMG cells, confirming known oncogenic locations of the protein. Treatment of glioma cells with PS together with genetic or chemical inhibition of EBP50 leads to more effective reduction of cell growth in vitro and in vivo. Conclusion Our data reveal a specific relation between HDAC inhibitors and scaffolding protein deregulation which might have a potential for therapeutic intervention for cancer treatment.


1999 ◽  
Vol 354 (1388) ◽  
pp. 1407-1421 ◽  
Author(s):  
Jeffrey A. Gray ◽  
Helen Hodges ◽  
John Sinden

Although neural transplantation has made a relatively successful transition from the animal laboratory to human neurosurgery for the treatment of Parkinson's disease, the use of human embryonic brain tissue as the source of transplants raises difficult ethical and practical problems. These are likely to impede the widespread use of this otherwise promising therapy across the range of types of brain damage to which the results of animal experiments suggest its potential applicability. Various alternative approaches are reviewed briefly, aimed at developing sources of tissue for transplantation that can be maintained in vitro until needed, so obviating the requirement for fresh embryonic tissue at each occasion of surgery. Particularly promising are conditionally immortalized neuroepithelial stem cell lines in which the immortalizing gene is downregulated upon transplantation into a host brain. We describe experiments from our laboratory with the use of cells of this kind, the multipotent MHP clonal cell lines, derived from the developing hippocampus of a transgenic mouse harbouring a temperature–sensitive oncogene. Implanted into the hippocampus of rats and marmosets with damage to the CA1 cell field, the MHP36 line gave rise to healthy surviving grafts and to essentially complete recovery of cognitive function. Post–mortem study of the implanted rat brains indicated that MHP36 cells migrate to the region of damage, adopt both neuronal (pyramidal) and glial phenotypes in vivo , and reconstitute the normal laminated appearance of the CA1 cell field. We have previously shown that, when primary differentiated foetal tissue is used as the source of grafts in rats with CA1 damage, there is a stringent requirement for replacement with homotypic CA1 cells. We interpret our results as showing that the MHP36 cell line responds to putative signals associated with damage to the hippocampus and takes up a phenotype appropriate for the repair of this damage; they therefore open the way to the development of a novel strategy with widespread applicability to the treatment of the diseased or damaged human brain.


2010 ◽  
Vol 76 ◽  
pp. 229-234
Author(s):  
Stefano Bellucci

I review some recent results obtained by my group at INFN, in collaboration with Collegues at CNR-IREA, Napoli, Italy about the cytotoxicity of buckypaper in human lymphocytes, as well as with Collegues at “La Sapienza” Rome University about the effect of buckypaper on cancer and primary cell lines in vitro and in vivo on laboratory rats


2021 ◽  
Vol 22 (8) ◽  
pp. 4216
Author(s):  
Hung-Jin Huang ◽  
Yu-Hsuan Lee ◽  
Yung-Ho Hsu ◽  
Chia-Te Liao ◽  
Yuh-Feng Lin ◽  
...  

Millions of experimental animals are widely used in the assessment of toxicological or biological effects of manufactured nanomaterials in medical technology. However, the animal consciousness has increased and become an issue for debate in recent years. Currently, the principle of the 3Rs (i.e., reduction, refinement, and replacement) is applied to ensure the more ethical application of humane animal research. In order to avoid unethical procedures, the strategy of alternatives to animal testing has been employed to overcome the drawbacks of animal experiments. This article provides current alternative strategies to replace or reduce the use of experimental animals in the assessment of nanotoxicity. The currently available alternative methods include in vitro and in silico approaches, which can be used as cost-effective approaches to meet the principle of the 3Rs. These methods are regarded as non-animal approaches and have been implemented in many countries for scientific purposes. The in vitro experiments related to nanotoxicity assays involve cell culture testing and tissue engineering, while the in silico methods refer to prediction using molecular docking, molecular dynamics simulations, and quantitative structure–activity relationship (QSAR) modeling. The commonly used novel cell-based methods and computational approaches have the potential to help minimize the use of experimental animals for nanomaterial toxicity assessments.


Author(s):  
Heiko Dudwiesus ◽  
Eberhard Merz

AbstractThe first part of this CME article (issue 5/20) provided a detailed examination of the biophysical effects of ultrasound waves, the exposure values, and in particular the thermal effect. In vivo and in vitro measurements have shown that the temperature increase in tissue associated with B-mode ultrasound is far too low to pose a potential risk. Even experiments with exposure values in the range of pulsed Doppler have shown that temperature increases of over 1.5 °C can only occur in areas in direct contact with the probe, thus making a limited exposure time particularly in the case of transvaginal application advisable. The second part of this CME article describes various laboratory and animal experiments for evaluating non-thermal effects and also presents the most important epidemiological studies in the last 30 years in the form of an overview and review. In addition to direct insonation of isolated cells to examine possible mutagenic effects, the blood of patients exposed in vivo to ultrasound was also analyzed in multiple experiments. Reproducible chromosome aberrations could not be found in any of the studies. In contrast, many experiments on pregnant rodents showed some significant complications, such as abortion, deformities, and behavioral disorders. As in the case of thermal effects, the results of these experiments indicate the presence of an intensity- or pressure-dependent effect threshold. Numerous epidemiological studies examining possible short-term and long-term consequences after intrauterine ultrasound exposure are available with the most important studies being discussed in the following. In contrast to information presented incorrectly in the secondary literature and in the lay press, health problems could not be seen in the children observed in the postpartum period in any of these studies.


Sign in / Sign up

Export Citation Format

Share Document