Responses of in vitro cell cultures to elicitation: regulatory role of jasmonic acid and methyl jasmonate: a review

Author(s):  
Neelofer Nabi ◽  
Seema Singh ◽  
Peer Saffeullah
Plants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 490
Author(s):  
Martin Sák ◽  
Ivana Dokupilová ◽  
Šarlota Kaňuková ◽  
Michaela Mrkvová ◽  
Daniel Mihálik ◽  
...  

The in vitro cell cultures derived from the grapevine (Vitis vinifera L.) have been used for the production of stilbenes treated with different biotic and abiotic elicitors. The red-grape cultivar Váh has been elicited by natural cellulose from Trichoderma viride, the cell wall homogenate from Fusarium oxysporum and synthetic jasmonates. The sodium-orthovanadate, known as an inhibitor of hypersensitive necrotic response in treated plant cells able to enhance production and release of secondary metabolite into the cultivation medium, was used as an abiotic elicitor. Growth of cells and the content of phenolic compounds trans-resveratrol, trans-piceid, δ-viniferin, and ɛ-viniferin, were analyzed in grapevine cells treated by individual elicitors. The highest accumulation of analyzed individual stilbenes, except of trans-piceid has been observed after treatment with the cell wall homogenate from F. oxysporum. Maximum production of trans-resveratrol, δ- and ɛ-viniferins was triggered by treatment with cellulase from T. viride. The accumulation of trans-piceid in cell cultures elicited by this cellulase revealed exactly the opposite effect, with almost three times higher production of trans-resveratrol than that of trans-piceid. This study suggested that both used fungal elicitors can enhance production more effectively than commonly used jasmonates.


2018 ◽  
Vol 9 ◽  
Author(s):  
Rohit Dhakarey ◽  
Manish L. Raorane ◽  
Achim Treumann ◽  
Preshobha K. Peethambaran ◽  
Rachel R. Schendel ◽  
...  

2013 ◽  
Vol 20 (5) ◽  
pp. R257-R267 ◽  
Author(s):  
Patsy Soon ◽  
Hippokratis Kiaris

MicroRNAs (miRNAs) represent a class of small non-coding RNAs with an important regulatory role in various physiological processes as well as in several pathologies including cancers. It is noteworthy that recent evidence suggests that the regulatory role of miRNAs during carcinogenesis is not limited to the cancer cells but they are also implicated in the activation of tumour stroma and its transition into a cancer-associated state. Results from experimental studies involving cells culturedin vitroand mice bearing experimental tumours, corroborated by profiling of clinical cancers for miRNA expression, underline this role and identify miRNAs as a potent regulator of the crosstalk between cancer and stroma cells. Considering the fundamental role of the tumour microenvironment in determining both the clinical characteristics of the disease and the efficacy of anticancer therapy, miRNAs emerge as an attractive target bearing important prognostic and therapeutic significance during carcinogenesis. In this article, we will review the available results that underline the role of miRNAs in tumour stroma biology and emphasise their potential value as tools for the management of the disease.


1988 ◽  
Vol 167 (2) ◽  
pp. 598-611 ◽  
Author(s):  
A McInnes ◽  
D M Rennick

Giant multinucleated cells (GMCs) are associated with granulomatous lesions that form in response to various infectious and noninfectious agents. The present study shows that mouse IL-4 induces the in vitro formation of GMCs by factor-dependent bone marrow and alveolar monocytes via cell fusion. GMCs appear 2 d after incubation of cell cultures with 20 U/ml or more of IL-4. Anti-IL-4 mAbs block the appearance of GMCs in these cultures, indicating that IL-4 acts directly on monocytes to promote fusion and does not secondarily induce the production of other soluble fusion factors. In soft agar cultures, IL-4 also causes the aggregation of macrophages and diminishes their migration. The role of IL-4 in a granulomatous inflammatory response is discussed.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Tomohiro Shimada ◽  
Yui Yokoyama ◽  
Takumi Anzai ◽  
Kaneyoshi Yamamoto ◽  
Akira Ishihama

AbstractOutside a warm-blooded animal host, the enterobacterium Escherichia coli K-12 is also able to grow and survive in stressful nature. The major organic substance in nature is plant, but the genetic system of E. coli how to utilize plant-derived materials as nutrients is poorly understood. Here we describe the set of regulatory targets for uncharacterized IclR-family transcription factor YiaJ on the E. coli genome, using gSELEX screening system. Among a total of 18 high-affinity binding targets of YiaJ, the major regulatory target was identified to be the yiaLMNOPQRS operon for utilization of ascorbate from fruits and galacturonate from plant pectin. The targets of YiaJ also include the genes involved in the utilization for other plant-derived materials as nutrients such as fructose, sorbitol, glycerol and fructoselysine. Detailed in vitro and in vivo analyses suggest that L-ascorbate and α-D-galacturonate are the effector ligands for regulation of YiaJ function. These findings altogether indicate that YiaJ plays a major regulatory role in expression of a set of the genes for the utilization of plant-derived materials as nutrients for survival. PlaR was also suggested to play protecting roles of E. coli under stressful environments in nature, including the formation of biofilm. We then propose renaming YiaJ to PlaR (regulator of plant utilization).


Sign in / Sign up

Export Citation Format

Share Document