scholarly journals MicroRNAs in the tumour microenvironment: big role for small players

2013 ◽  
Vol 20 (5) ◽  
pp. R257-R267 ◽  
Author(s):  
Patsy Soon ◽  
Hippokratis Kiaris

MicroRNAs (miRNAs) represent a class of small non-coding RNAs with an important regulatory role in various physiological processes as well as in several pathologies including cancers. It is noteworthy that recent evidence suggests that the regulatory role of miRNAs during carcinogenesis is not limited to the cancer cells but they are also implicated in the activation of tumour stroma and its transition into a cancer-associated state. Results from experimental studies involving cells culturedin vitroand mice bearing experimental tumours, corroborated by profiling of clinical cancers for miRNA expression, underline this role and identify miRNAs as a potent regulator of the crosstalk between cancer and stroma cells. Considering the fundamental role of the tumour microenvironment in determining both the clinical characteristics of the disease and the efficacy of anticancer therapy, miRNAs emerge as an attractive target bearing important prognostic and therapeutic significance during carcinogenesis. In this article, we will review the available results that underline the role of miRNAs in tumour stroma biology and emphasise their potential value as tools for the management of the disease.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chunzhen Cheng ◽  
Fan Liu ◽  
Na Tian ◽  
Raphael Anue Mensah ◽  
Xueli Sun ◽  
...  

AbstractFusarium wilt disease, caused by Fusarium oxysporum f.sp. cubense (Foc), has been recognized as the most devastating disease to banana. The regulatory role of long non-coding RNAs (lncRNAs) in plant defense has been verified in many plant species. However, the understanding of their role during early FocTR4 (Foc tropical race 4) infection stage is very limited. In this study, lncRNA sequencing was used to reveal banana root transcriptome profile changes during early FocTR4 infection stages. Quantitative real time PCR (qRT-PCR) was performed to confirm the expression of eight differentially expressed (DE) lncRNAs (DELs) and their predicted target genes (DETs), and three DE genes (DEGs). Totally, 12,109 lncRNAs, 36,519 mRNAs and 2642 novel genes were obtained, of which 1398 (including 78 DELs, 1220 DE known genes and 100 DE novel genes) were identified as FocTR4 responsive DE transcripts. Gene function analysis revealed that most DEGs were involved in biosynthesis of secondary metabolites, plant–pathogen interaction, plant hormone signal transduction, phenylalanine metabolism, phenylpropanoid biosynthesis, alpha-linolenic acid metabolism and so on. Coincidently, many DETs have been identified as DEGs in previous transcriptome studies. Moreover, many DETs were found to be involved in ribosome, oxidative phosphorylation, lipoic acid metabolism, ubiquitin mediated proteolysis, N-glycan biosynthesis, protein processing in endoplasmic reticulum and DNA damage response pathways. QRT-PCR result showed the expression patterns of the selected transcripts were mostly consistent with our lncRNA sequencing data. Our present study showed the regulatory role of lncRNAs on known biotic and abiotic stress responsive genes and some new-found FocTR4 responsive genes, which can provide new insights into FocTR4-induced changes in the banana root transcriptome during the early pathogen infection stage.


Biomedicines ◽  
2021 ◽  
Vol 9 (7) ◽  
pp. 759
Author(s):  
Gaku Yamanaka ◽  
Fuyuko Takata ◽  
Yasufumi Kataoka ◽  
Kanako Kanou ◽  
Shinichiro Morichi ◽  
...  

Pericytes are a component of the blood–brain barrier (BBB) neurovascular unit, in which they play a crucial role in BBB integrity and are also implicated in neuroinflammation. The association between pericytes, BBB dysfunction, and the pathophysiology of epilepsy has been investigated, and links between epilepsy and pericytes have been identified. Here, we review current knowledge about the role of pericytes in epilepsy. Clinical evidence has shown an accumulation of pericytes with altered morphology in the cerebral vascular territories of patients with intractable epilepsy. In vitro, proinflammatory cytokines, including IL-1β, TNFα, and IL-6, cause morphological changes in human-derived pericytes, where IL-6 leads to cell damage. Experimental studies using epileptic animal models have shown that cerebrovascular pericytes undergo redistribution and remodeling, potentially contributing to BBB permeability. These series of pericyte-related modifications are promoted by proinflammatory cytokines, of which the most pronounced alterations are caused by IL-1β, a cytokine involved in the pathogenesis of epilepsy. Furthermore, the pericyte-glial scarring process in leaky capillaries was detected in the hippocampus during seizure progression. In addition, pericytes respond more sensitively to proinflammatory cytokines than microglia and can also activate microglia. Thus, pericytes may function as sensors of the inflammatory response. Finally, both in vitro and in vivo studies have highlighted the potential of pericytes as a therapeutic target for seizure disorders.


Author(s):  
Н.М. Геворкян ◽  
Н.В. Тишевская

Цель обзора - анализ клеточной основы патогенеза различных заболеваний в свете регуляторной роли Т-лимфоцитов. Рассматривается роль поликлонального многообразия популяции Т-лимфоцитов, особых свойств этих клеток-представителей гомеостатической системы организма в физиологических процессах в норме и при патологии. Указаны перспективы терапевтического и профилактического воздействий, связанные с использованием суммарных РНК нормальных лимфоидных клеток аллогенной и ксеногенной природы. Указана также возможность создания с помощью лимфоцитарных суммарных РНК адекватных моделей заболеваний человека на пути к развитию персонифицированной медицины. This review provides an analysis of the cellular basis of the pathogenesis of various diseases in the light of the regulatory role of T-lymphocytes. The role of the polyclonal diversity of the population of T-lymphocytes, the special properties of these cells-representatives of the homeostatic system of the body, in physiological processes in health and disease is considered. Prospects for therapeutic and prophylactic effects associated with the use of total RNA of normal lymphoid cells of allogeneic and xenogenic origin are indicated. The possibility of creating, using lymphocytic total RNA, adequate models of human diseases for the development of personalized medicine is also indicated.


2020 ◽  
Vol 11 ◽  
Author(s):  
Imran Ahmad ◽  
Araceli Valverde ◽  
Raza Ali Naqvi ◽  
Afsar R. Naqvi

Macrophages (Mφ) are immune cells that exhibit remarkable functional plasticity. Identification of novel endogenous factors that can regulate plasticity and innate immune functions of Mφ will unravel new strategies to curb immune-related diseases. Long non-coding RNAs (lncRNAs) are a class of endogenous, non-protein coding, regulatory RNAs that are increasingly being associated with various cellular functions and diseases. Despite their ubiquity and abundance, lncRNA-mediated epigenetic regulation of Mφ polarization and innate immune functions is poorly studied. This study elucidates the regulatory role of lncRNAs in monocyte to Mφ differentiation, M1/M2 dichotomy and innate immune responses. Expression profiling of eighty-eight lncRNAs in monocytes and in vitro differentiated M2 Mφ identified seventeen differentially expressed lncRNAs. Based on fold-change and significance, we selected four differentially expressed lncRNAs viz., RN7SK, GAS5, IPW, and ZFAS1 to evaluate their functional impact. LncRNA knockdown was performed on day 3 M2 Mφ and the impact on polarization was assessed on day 7 by surface marker analysis. Knockdown of RN7SK and GAS5 showed downregulation of M2 surface markers (CD163, CD206, or Dectin) and concomitant increase in M1 markers (MHC II or CD23). RN7SK or GAS5 knockdown showed no significant impact on CD163, CD206, or CD23 transcripts. M1/M2 markers were not impacted by IPW or ZFAS1 knockdown. Functional regulation of antigen uptake/processing and phagocytosis, two central innate immune pathways, by candidate lncRNA was assessed in M1/M2 Mφ. Compared to scramble, enhanced antigen uptake and processing were observed in both M1/M2 Mφ transfected with siRNA targeting GAS5 and RN7SK but not IPW and ZFAS1. In addition, knockdown of RN7SK significantly augmented uptake of labelled E. coli in vitro by M1/M2 Mφ, while no significant difference was in GAS5 silencing cells. Together, our results highlight the instrumental role of lncRNA (RN7SK and GAS5)-mediated epigenetic regulation of macrophage differentiation, polarization, and innate immune functions.


2020 ◽  
Vol 21 (17) ◽  
pp. 5951
Author(s):  
Laura Patras ◽  
Marcel H. A. M. Fens ◽  
Pieter Vader ◽  
Arjan Barendrecht ◽  
Alina Sesarman ◽  
...  

Extracellular vesicles (EV) secreted in the tumour microenvironment (TME) are emerging as major antagonists of anticancer therapies by orchestrating the therapeutic outcome through altering the behaviour of recipient cells. Recent evidence suggested that chemotherapeutic drugs could be responsible for the EV-mediated tumour–stroma crosstalk associated with cancer cell drug resistance. Here, we investigated the capacity of tumour EV (TEV) secreted by normoxic and hypoxic (1% oxygen) C26 cancer cells after doxorubicin (DOX) treatment to alter the response of naïve C26 cells and RAW 264.7 macrophages to DOX. We observed that C26 cells were less responsive to DOX treatment under normoxia compared to hypoxia, and a minimally cytotoxic DOX concentration that mounted distinct effects on cell viability was selected for TEV harvesting. Homotypic and heterotypic pretreatment of naïve hypoxic cancer and macrophage-like cells with normoxic DOX-elicited TEV rendered these cells slightly less responsive to DOX treatment. The observed effects were associated with strong hypoxia-inducible factor 1-alpha (HIF-1α) induction and B-cell lymphoma–extra-large anti-apoptotic protein (Bcl-xL)-mediated anti-apoptotic response in normoxic DOX-treated TEV donor cells, being also tightly connected to the DOX-TEV-mediated HIF-1α induction, as well as Bcl-xL levels increasing in recipient cells. Altogether, our results could open new perspectives for investigating the role of chemotherapy-elicited TEV in the colorectal cancer TME and their modulatory actions on promoting drug resistance.


2005 ◽  
Vol 73 (4) ◽  
pp. 2515-2523 ◽  
Author(s):  
Adriano L. S. Souza ◽  
Ester Roffê ◽  
Vanessa Pinho ◽  
Danielle G. Souza ◽  
Adriana F. Silva ◽  
...  

ABSTRACT In human schistosomiasis, the concentrations of the chemokine macrophage inflammatory protein 1α (MIP-1α/CCL3) is greater in the plasma of patients with clinical hepatosplenic disease. The objective of the present study was to confirm the ability of CCL3 to detect severe disease in patients classified by ultrasonography (US) and to evaluate the potential role of CCL3 in Schistosoma mansoni-infected mice. CCL3 was measured by enzyme-linked immunosorbent assay in the plasma of S. mansoni-infected patients. CCL3-deficient mice were infected with 25 cercariae, and various inflammatory and infectious indices were evaluated. The concentration of CCL3 was higher in the plasma of S. mansoni-infected than noninfected patients. Moreover, CCL3 was greater in those with US-defined hepatosplenic than with the intestinal form of the disease. In CCL3-deficient mice, the size of the granuloma and the liver eosinophil peroxidase activity and collagen content were diminished compared to wild-type mice. In CCL3-deficient mice, the worm burden after 14 weeks of infection, but not after 9 weeks, was consistently smaller. The in vitro response of mesenteric lymph node cells to antigen stimulation was characterized by lower levels of interleukin-4 (IL-4) and IL-10. CCL3 is a marker of disease severity in infected humans, and experimental studies in mice suggest that CCL3 may be a causative factor in the development of severe schistosomiasis.


Sign in / Sign up

Export Citation Format

Share Document