Development of a nutrient mist bioreactor for growth of hairy roots

1999 ◽  
Vol 35 (3) ◽  
pp. 271-274 ◽  
Author(s):  
C. Z. Liu ◽  
Y. C. Wang ◽  
B. Zhao ◽  
C. Guo ◽  
F. Ouyang ◽  
...  
Keyword(s):  
2010 ◽  
Vol 107 (5) ◽  
pp. 802-813 ◽  
Author(s):  
Ganapathy Sivakumar ◽  
Chunzhao Liu ◽  
Melissa J. Towler ◽  
Pamela J. Weathers

2014 ◽  
Vol 83 (3) ◽  
pp. 229-237 ◽  
Author(s):  
Natalia Urbańska ◽  
Joanna Giebułtowicz ◽  
Olga Olszowska ◽  
Wojciech J. Szypuła

The growth and saponin accumulation were measured in two lines of transgenic hairy roots of <em>Platycodon grandiflorum</em>, Pl 6 and Pl 17, cultured for 8 weeks in 250-ml shake flasks containing 50 ml of hormone-free woody plant medium supplemented with 40 g/l sucrose and in the Pl 17 line cultured for 12 weeks in a 5-l mist bioreactor containing 1.5 l of the same medium. With both methods, the growth of transgenic hairy roots was assessed as both fresh and dry weight and the biomass growth was correlated with the conductivity and sucrose uptake. The accumulation of saponins was measured and compared with that in roots derived from the field cultivation. The saponin concentrations were significantly higher in the two hairy root lines cultured in shake flasks [6.92 g/100 g d.w. (g%) and 5.82 g% in Pl 6 and Pl 17, respectively] and the line cultured in the bioreactor (5.93 g%) than in the roots derived from the field cultivation (4.02 g%). The results suggest that cultures of <em>P. grandiflorum</em> hairy roots may be a valuable source for obtaining saponins.


2015 ◽  
Vol 38 (3) ◽  
pp. 391-398 ◽  
Author(s):  
Ritu Ranjan ◽  
Sambasiva Rao Katuri ◽  
Rajesh Khanna

Planta Medica ◽  
2008 ◽  
Vol 74 (09) ◽  
Author(s):  
IS Nunes ◽  
AC Figueiredo ◽  
H Trindade ◽  
JB Barroso ◽  
LG Pedro
Keyword(s):  

2016 ◽  
Vol 7 ◽  
Author(s):  
Suvi T. Häkkinen ◽  
Elisabeth Moyano ◽  
Rosa M. Cusidó ◽  
Kirsi-Marja Oksman-Caldentey

2020 ◽  
Vol 71 (22) ◽  
pp. 6861-6864
Author(s):  
María A Pedreño ◽  
Lorena Almagro

This article comments on: Barba-Espín G, Chen S-T, Agnolet S, Hegelund JN, Stanstrup J, Christensen JH, Müller R, Lütken H. 2020. Ethephon-induced changes in antioxidants and phenolic compounds in anthocyanin-producing black carrot hairy root cultures. Journal of Experimental Botany 71, 7030–7045.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Arun Kumaran Anguraj Vadivel ◽  
Tim McDowell ◽  
Justin B. Renaud ◽  
Sangeeta Dhaubhadel

AbstractGmMYB176 is an R1 MYB transcription factor that regulates multiple genes in the isoflavonoid biosynthetic pathway, thereby affecting their levels in soybean roots. While GmMYB176 is important for isoflavonoid synthesis, it is not sufficient for the function and requires additional cofactor(s). The aim of this study was to identify the GmMYB176 interactome for the regulation of isoflavonoid biosynthesis in soybean. Here, we demonstrate that a bZIP transcription factor GmbZIP5 co-immunoprecipitates with GmMYB176 and shows protein–protein interaction in planta. RNAi silencing of GmbZIP5 reduced the isoflavonoid level in soybean hairy roots. Furthermore, co-overexpression of GmMYB176 and GmbZIP5 enhanced the level of multiple isoflavonoid phytoallexins including glyceollin, isowighteone and a unique O-methylhydroxy isoflavone in soybean hairy roots. These findings could be utilized to develop biotechnological strategies to manipulate the metabolite levels either to enhance plant defense mechanisms or for human health benefits in soybean or other economically important crops.


2020 ◽  
Vol 21 (6) ◽  
pp. 2177 ◽  
Author(s):  
Bo Li ◽  
Jia-Cheng Zheng ◽  
Ting-Ting Wang ◽  
Dong-Hong Min ◽  
Wen-Liang Wei ◽  
...  

Vascular plant one-zinc-finger (VOZ) transcription factor, a plant specific one-zinc-finger-type transcriptional activator, is involved in regulating numerous biological processes such as floral induction and development, defense against pathogens, and response to multiple types of abiotic stress. Six VOZ transcription factor-encoding genes (GmVOZs) have been reported to exist in the soybean (Glycine max) genome. In spite of this, little information is currently available regarding GmVOZs. In this study, GmVOZs were cloned and characterized. GmVOZ genes encode proteins possessing transcriptional activation activity in yeast cells. GmVOZ1E, GmVOZ2B, and GmVOZ2D gene products were widely dispersed in the cytosol, while GmVOZ1G was primarily located in the nucleus. GmVOZs displayed a differential expression profile under dehydration, salt, and salicylic acid (SA) stress conditions. Among them, GmVOZ1G showed a significantly induced expression in response to all stress treatments. Overexpression of GmVOZ1G in soybean hairy roots resulted in a greater tolerance to drought and salt stress. In contrast, RNA interference (RNAi) soybean hairy roots suppressing GmVOZ1G were more sensitive to both of these stresses. Under drought treatment, soybean composite plants with an overexpression of hairy roots had higher relative water content (RWC). In response to drought and salt stress, lower malondialdehyde (MDA) accumulation and higher peroxidase (POD) and superoxide dismutase (SOD) activities were observed in soybean composite seedlings with an overexpression of hairy roots. The opposite results for each physiological parameter were obtained in RNAi lines. In conclusion, GmVOZ1G positively regulates drought and salt stress tolerance in soybean hairy roots. Our results will be valuable for the functional characterization of soybean VOZ transcription factors under abiotic stress.


Sign in / Sign up

Export Citation Format

Share Document