Unsteady internal flow conditions of mini-centrifugal pump with splitter blades

2013 ◽  
Vol 22 (1) ◽  
pp. 86-91 ◽  
Author(s):  
T. Shigemitsu ◽  
J. Fukutomi ◽  
K. Kaji ◽  
T. Wada
Author(s):  
Zhengjing Shen ◽  
Wei Han ◽  
Yiming Zhong ◽  
Bo Luo ◽  
Rennian Li ◽  
...  

Previous work has shown that performance and internal flow characteristics of a centrifugal pump can be significantly improved with grooved volute casing (GVC). However, it has been found that the selection of the design parameters of the groove structure also has a direct impact on the performance output, internal flow pressure pulsation and erosion wear characteristics of the overflow components of centrifugal pump, so it is necessary to further analyze the design rules of the groove structure parameters. In this study, we first investigated the influence of the number of grooves on the head, efficiency and unsteady pressure pulsation characteristics of the internal flow field of the centrifugal pump, and on this basis, the correlation between different particle parameters and the erosion wear of key overflow components under the conditions of solid–liquid two-phase flow were also studied, and the erosion wear characteristics of the inner wall of the volute casing of centrifugal pump with GVC and original volute casing (OVC) structures were compared. This research leads to the conclusion that when the number of grooves is 3, the groove structure has the least influence on the performance of the centrifugal pump, and the overall change of the performance curve is more stable. Additionally, the pressure pulsation at each monitoring point of the GVC under the same flow condition is smaller, and when the number of grooves increases, the pressure pulsation amplitude also decreases. When the number of grooves is 3, the GVC shows a more significant flow improvement effect under all flow conditions. Based on the improvement of the groove structure on the flow stability, the particle motion behavior can be affected at the same time, so that the pump with GVC can mitigate the erosion wear of the inner wall of the volute casing under the solid–liquid two-phase flow conditions, which improves the critical performance and service life of the key overflow components of the pump.


2014 ◽  
Vol 680 ◽  
pp. 303-306
Author(s):  
Jia Li ◽  
Hua Cong Li ◽  
Jiang Feng Fu ◽  
Shu Hong Wang

With the development of the aero engine control technique, aero fuel centrifugal pump with integrated inducer and impeller meet the requirements better than the divided pump. This paper established the hybrid network of the centrifugal pump which adopted multi-block topology structure and octree format, analyzed the internal flow field performance of the pump based on numerical simulation. The simulation datas compared with test datas show that under different calculation conditions, head error of the simulation data and experimental data is less than 1%, and the efficiency value of error is less than 5%. The simulation method can accurately calculate the performance of the pump. The simulation analysis shows that the asymmetry of the impeller internal pressure is appreciable under different flow conditions because of the inlet length, under other small flow conditions. The most dramatic change is the pressure in the impeller channel, and the pressure under large flow conditions is lower than that under other flow conditions. In fixed location of the pressure side, there may produce low speed flow group, the situation is the same as in the entrance to the attachment of back pressure side.


Author(s):  
Takaharu Tanaka

Centrifugal pump is a typical turbomachinery, which transfers mechanical energy to hydraulic energy through the rotational motion of impeller blades. It is commonly used and generally operated at a very high efficiency. Therefore, it would seem that theoretical discussion of performance and experimental observations of internal flow conditions inside the pump should be fully understood by now. However, it appears that neither the basic expressions nor the theoretical design methods are that clear. For example, the most fundamental definition of pump head, which is the most important equation in pump textbooks, is not often well explained. The purpose of this oral presentation is to share preliminary results of on-going studies on the energy transfer in centrifugal pumps.


Author(s):  
Weihui Xu ◽  
Xiaoke He ◽  
Xiao Hou ◽  
Zhihao Huang ◽  
Weishu Wang

AbstractCavitation is a phenomenon that occurs easily during rotation of fluid machinery and can decrease the performance of a pump, thereby resulting in damage to flow passage components. To study the influence of wall roughness on the cavitation performance of a centrifugal pump, a three-dimensional model of internal flow field of a centrifugal pump was constructed and a numerical simulation of cavitation in the flow field was conducted with ANSYS CFX software based on the Reynolds normalization group k-epsilon turbulence model and Zwart cavitation model. The cavitation can be further divided into four stages: cavitation inception, cavitation development, critical cavitation, and fracture cavitation. Influencing laws of wall roughness of the blade surface on the cavitation performance of a centrifugal pump were analyzed. Research results demonstrate that in the design process of centrifugal pumps, decreasing the wall roughness appropriately during the cavitation development and critical cavitation is important to effectively improve the cavitation performance of pumps. Moreover, a number of nucleation sites on the blade surface increase with the increase in wall roughness, thereby expanding the low-pressure area of the blade. Research conclusions can provide theoretical references to improve cavitation performance and optimize the structural design of the pump.


Sensors ◽  
2021 ◽  
Vol 21 (3) ◽  
pp. 886
Author(s):  
Cui Dai ◽  
Chao Guo ◽  
Yiping Chen ◽  
Liang Dong ◽  
Houlin Liu

The strong noise generated during the operation of the centrifugal pump harms the pump group and people. In order to decrease the noise of the centrifugal pump, a specific speed of 117.3 of the centrifugal pump is chosen as a research object. The bionic modification of centrifugal pump blades is carried out to explore the influence of different bionic structures on the noise reduction performance of centrifugal pumps. The internal flow field and internal sound field of bionic blades are studied by numerical calculation and test methods. The test is carried out on a closed pump test platform which includes external characteristics and a flow noise test system. The effects of two different bionic structures on the external characteristics, acoustic amplitude–frequency characteristics and flow field structure of a centrifugal pump, are analyzed. The results show that the pit structure has little influence on the external characteristic parameters, while the sawtooth structure has a relatively great influence. The noise reduction effect of the pit structure is aimed at the wide-band noise, while the sawtooth structure is aimed at the discrete noise of the blade-passing frequency (BPF) and its frequency doubling. The noise reduction ability of the sawtooth structure is not suitable for high-frequency bands.


2021 ◽  
Vol 1909 (1) ◽  
pp. 012075
Author(s):  
Daisuke Sugiyama ◽  
Asuma Ichinose ◽  
Tomoki Takeda ◽  
Kazuyoshi Miyagawa ◽  
Hideyo Negishi ◽  
...  

2021 ◽  
Vol 9 (2) ◽  
pp. 121
Author(s):  
Yang Yang ◽  
Ling Zhou ◽  
Hongtao Zhou ◽  
Wanning Lv ◽  
Jian Wang ◽  
...  

Marine centrifugal pumps are mostly used on board ship, for transferring liquid from one point to another. Based on the combination of orthogonal testing and numerical simulation, this paper optimizes the structure of a drainage trough for a typical low-specific speed centrifugal pump, determines the priority of the various geometric factors of the drainage trough on the pump performance, and obtains the optimal impeller drainage trough scheme. The influence of drainage tank structure on the internal flow of a low-specific speed centrifugal pump is also analyzed. First, based on the experimental validation of the initial model, it is determined that the numerical simulation method used in this paper is highly accurate in predicting the performance of low-specific speed centrifugal pumps. Secondly, based on the three factors and four levels of the impeller drainage trough in the orthogonal test, the orthogonal test plan is determined and the orthogonal test results are analyzed. This work found that slit diameter and slit width have a large impact on the performance of low-specific speed centrifugal pumps, while long and short vane lap lengths have less impact. Finally, we compared the internal flow distribution between the initial model and the optimized model, and found that the slit structure could effectively reduce the pressure difference between the suction side and the pressure side of the blade. By weakening the large-scale vortex in the flow path and reducing the hydraulic losses, the drainage trough impellers obtained based on orthogonal tests can significantly improve the hydraulic efficiency of low-specific speed centrifugal pumps.


Sign in / Sign up

Export Citation Format

Share Document