Specimen Size Effect of Tensile Behavior of Al-4.0 wt pct Cu Alloy Sheets: Effects of Precipitates and Cyclic Predeformation

Author(s):  
Y. Yan ◽  
T. D. Wang ◽  
Q. S. Song ◽  
Q. J. Zhao ◽  
X. J. Guan ◽  
...  
Data in Brief ◽  
2021 ◽  
Vol 35 ◽  
pp. 106954
Author(s):  
Costas A. Anagnostopoulos ◽  
Denis Cabja ◽  
Chrysi A. Papadimitriou

Materials ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 3795
Author(s):  
Fernando Suárez ◽  
Jaime C. Gálvez ◽  
Marcos G. Alberti ◽  
Alejandro Enfedaque

The size effect on plain concrete specimens is well known and can be correctly captured when performing numerical simulations by using a well characterised softening function. Nevertheless, in the case of polyolefin-fibre-reinforced concrete (PFRC), this is not directly applicable, since using only diagram cannot capture the material behaviour on elements with different sizes due to dependence of the orientation factor of the fibres with the size of the specimen. In previous works, the use of a trilinear softening diagram proved to be very convenient for reproducing fracture of polyolefin-fibre-reinforced concrete elements, but only if it is previously adapted for each specimen size. In this work, a predictive methodology is used to reproduce fracture of polyolefin-fibre-reinforced concrete specimens of different sizes under three-point bending. Fracture is reproduced by means of a well-known embedded cohesive model, with a trilinear softening function that is defined specifically for each specimen size. The fundamental points of these softening functions are defined a priori by using empirical expressions proposed in past works, based on an extensive experimental background. Therefore, the numerical results are obtained in a predictive manner and then compared with a previous experimental campaign in which PFRC notched specimens of different sizes were tested with a three-point bending test setup, showing that this approach properly captures the size effect, although some values of the fundamental points in the trilinear diagram could be defined more accurately.


Author(s):  
Gap-Yong Kim ◽  
Muammer Koc ◽  
Jun Ni

Application of microforming in various research areas has received much attention due to the increased demand for miniature metallic parts that require mass production. For the accurate analysis and design of microforming process, proper modeling of material behavior at the micro/meso-scale is necessary by considering the size effects. Two size effects are known to exist in metallic materials. One is the “grain size” effect, and the other is the “feature/specimen size” effect. This study investigated the “feature/specimen size” effect and introduced a scaling model which combined both feature/specimen and grain size effects. Predicted size effects were compared with experiments obtained from previous research and showed a very good agreement. The model was also applied to forming of micro-features by coining. A flow stress model for Type 304 stainless steel taking into consideration the effect of the grain and feature size was developed and implemented into a finite element simulation tool for an accurate numerical analysis. The scaling model offered a simple way to model the size effect down to length scales of a couple of grains and extended the use of continuum plasticity theories to micro/meso-length scales.


Author(s):  
Anastasios M. Ioannides

Application of fracture mechanics concepts developed in various branches of engineering to the pavement problem can address current limitations, thereby advancing considerably existing pavement design procedures. The state of the art in fracture mechanics applications to pavement engineering is summarized, and an in-depth discussion of one of the major concerns in such applications, the specimen-size effect, is provided. It is concluded that the fictitious crack model proposed by Hillerborg appears most promising for computerized application to pavements. The similitude concepts developed by Bache will be very useful in such efforts. Both the desirability and the scarcity of suitable candidates to replace Miner’s cumulative linear fatigue hypothesis in conventional pavement design are confirmed. Fracture mechanics is shown to be a very promising engineering discipline from which innovations could be transplanted to pavement activities. Nonetheless, it is pointed out that rather slow progress characterizes fracture mechanics developments in general. Pavement engineers clearly need to remain abreast of and involved in fracture mechanics activities.


2019 ◽  
Vol 60 (6) ◽  
pp. 882-887
Author(s):  
Junpei Umeyama ◽  
Akira Yamauchi

2019 ◽  
Vol 294 ◽  
pp. 104-110 ◽  
Author(s):  
Le Le Kang ◽  
Dong Han ◽  
Xiao Wu Li

To explore the role of dislocation slip mode playing in the size effect of mechanical behavior of metallic materials, the tensile behavior of Cu-5at.%Mn and Cu-20at.%Mn alloys with thickness (t) spanning from 0.1 to 2.0 mm is investigated. The results reveal that the yield strength σYS of Cu-5at.%Mn alloy displays an independence of thickness, whereas the ultimate tensile strength σUTS and the uniform elongation δ show an obvious size effect. The σUTS and δ first slightly decrease as t is reduced from 2.0 to 0.5 mm, but evidently drop when t is below 0.5 mm. A similar size effect is also exhibited in Cu-20at.%Mn alloy; however, the variation trend of “the smaller the weaker” in size effect can be weakened by the planar slip of dislocations occurring during the deformation of this alloy.


2013 ◽  
Vol 79 (799) ◽  
pp. 354-358 ◽  
Author(s):  
Chuantong CHEN ◽  
Nobuyuki SHISHIDO ◽  
Kozo KOIWA ◽  
Shoji KAMIYA ◽  
Hisashi SATO ◽  
...  

Author(s):  
Ludek Stratil ◽  
Filip Siska ◽  
Hynek Hadraba ◽  
Stanislava Fintova ◽  
Tomas Mrna ◽  
...  

The contribution aims to evaluate fracture toughness of the P91 steel in the ductile regime. This steel is broadly used for applications for pressure vessels and piping systems. The J–R curves were obtained using 1T, 0.5T and 0.25T CT specimens at 23 °C and using 0.5T and 0.25T CT specimens up to 600 °C. The energy normalization method for the J–R curve determination according to the ASTM E1820 was used. The resistance to crack propagation shows temperature dependence and the dynamic strain ageing effect with minimum values at 400 °C. Both specimen sizes 0.5T and 0.25T give a similar trend of the temperature dependence of fracture toughness. However, the size effect is observed as fracture toughness decreases with the specimen size. The results obtained are compared with the results of other authors pointing the specimen size effect and the temperature dependence of the steel.


Sign in / Sign up

Export Citation Format

Share Document