Mechanical and tribological properties of interlayer films for the damascene-Cu chemical-mechanical planarization process

2002 ◽  
Vol 31 (10) ◽  
pp. 1016-1021 ◽  
Author(s):  
A. K. Sikder ◽  
Ashok Kumar
2001 ◽  
Vol 697 ◽  
Author(s):  
A.K. Sikder ◽  
S. Thagella ◽  
U.C. Bandugilla ◽  
Ashok Kumar

AbstractChemical mechanical planarization (CMP) occurs at an atomic level at the slurry/wafer interface and hence slurries and the interaction of the films and polishing pads play a critical role in the successful implementation of this process. Understanding the tribological properties of a dielectric layer in the CMP process is critical for successful evaluation and implementation of the materials. In this paper, we present the effect of tribological properties of undoped and florine doped silicon dioxide films on their CMP process. A micro-CMP tester was used to study the fundamental aspects of CMP process. We have studied the CMP process of oxides on polyurethane pads (IC1000-B4/SubaIV) with colloidal silica slurry at different conditions. The coefficient of friction (COF) and acoustic emission signal was monitored during process. The COF was measured during the process and was found to varies differently for different samples and with down force and platen roatation. The effects of machine's parameters on the polishing performance and correlation of physical phenomena with the process has been discussed.


Author(s):  
Arun Sikder ◽  
Norm Gitis ◽  
Michael Vinogradov ◽  
Antanas Daugela

For faster signal propagation in integrated circuits, new materials with lower dielectric constant (low-k) values are required with copper metal lines. Although integration of low-k materials (k<3.0) has been demonstrated, but ultra low-k materials possess many challenges due to their poor mechanical integrity and weak adhesion to other interconnects. During chemical mechanical planarization (CMP) generation of several defects including delamination of low-k materials is severe problem in the integration of these materials. Different slurries and pad introduces different levels of defect and also batch-to-batch variation in consumables is often makes process more difficult. In this study we have investigated the tribological properties of CMP pad and wafer interface while monitoring coefficient of friction and acoustic emission data. Signals are analyzed in order to online defect monitoring, batch-to-batch consumable variations and different consumables effects.


2001 ◽  
Vol 30 (12) ◽  
pp. 1520-1526 ◽  
Author(s):  
A. K. Sikder ◽  
Frank Giglio ◽  
John Wood ◽  
Ashok Kumar ◽  
Mark Anthony

2021 ◽  
Author(s):  
Mengyao Ning ◽  
Kangshuai Li ◽  
Chengqi Yan ◽  
Guangfei Wang ◽  
Zehua Xu ◽  
...  

Metals ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1194
Author(s):  
Philipp Kiryukhantsev-Korneev ◽  
Alina Sytchenko ◽  
Yuriy Kaplanskii ◽  
Alexander Sheveyko ◽  
Stepan Vorotilo ◽  
...  

The coatings ZrB2 and Zr-B-N were deposited by magnetron sputtering of ZrB2 target in Ar and Ar–15%N2 atmospheres. The structure and properties of the coatings were investigated via scanning and transmission electron microscopy, energy dispersion analysis, optical profilometry, glowing discharge optical emission spectroscopy and X-ray diffraction analysis. Mechanical and tribological properties of the coatings were investigated using nanoindentation, “pin-on-disc” tribological testing and “ball-on-plate” impact testing. Free corrosion potential and corrosion current density were measured by electrochemical testing in 1N H2SO4 and 3.5%NaCl solutions. The oxidation resistance of the coatings was investigated in the 600–800 °С temperature interval. The coatings deposited in Ar contained 4–11 nm grains of the h-ZrB2 phase along with free boron. Nitrogen-containing coatings consisted of finer crystals (1–4 nm) of h-ZrB2, separated by interlayers of amorphous a-BN. Both types of coatings featured hardness of 22–23 GPa; however, the introduction of nitrogen decreased the coating’s elastic modulus from 342 to 266 GPa and increased the elastic recovery from 62 to 72%, which enhanced the wear resistance of the coatings. N-doped coatings demonstrated a relatively low friction coefficient of 0.4 and a specific wear rate of ~1.3 × 10−6 mm3N−1m−1. Electrochemical investigations revealed that the introduction of nitrogen into the coatings resulted in the decrease of corrosion current density in 3.5% NaCl and 1N H2SO4 solution up to 3.5 and 5 times, correspondingly. The superior corrosion resistance of Zr-В-N coatings was related to the finer grains size and increased volume of the BN phase. The samples ZrB2 and Zr-B-N resisted oxidation at 600 °C. N-free coatings resisted oxidation (up to 800 °С) and the diffusion of metallic elements from the substrate better. In contrast, Zr-B-N coatings experienced total oxidation and formed loose oxide layers, which could be easily removed from the substrate.


Sign in / Sign up

Export Citation Format

Share Document