Interfacial Reaction and Wetting Behavior Between Pt and Molten Solder

2008 ◽  
Vol 38 (1) ◽  
pp. 25-32 ◽  
Author(s):  
S.C. Yang ◽  
W.C. Chang ◽  
Y.W. Wang ◽  
C.R. Kao
2018 ◽  
Vol 206 ◽  
pp. 03005
Author(s):  
Bin Hou ◽  
Fengmei Liu ◽  
Hongqin Wang ◽  
Yupeng Zhang ◽  
Jianglong Yi ◽  
...  

In order to explore the effect of addition of mixed rare earths (MRE) on the wetting behavior and interfacial reaction between Sn-0.70Cu-0.05Ni solder and amorphous Fe84.3Si10.3B5.4 alloy, 0.25 wt.% percentage of the MRE, which are mainly elements La and Ce, were added into the solder. Results show it can refine the microstructure of the solder alloy, and there is limited change of melting temperature with the addition of MRE in the solder. The wettability of the solder on amorphous substrate is improved by adding 0.25 wt.% percentage of the MRE into Sn-0.70Cu-0.05Ni solder. Moreover, research results indicate that, with the increase of wetting temperature, the final equilibrium wetting angles of Sn-0.70Cu-0.05Ni and Sn-0.70Cu-0.05Ni-0.25MRE on amorphous substrate decrease gradually, indicating the better wettability at the higher wetting temperature. In addition, with the increase of temperature, the distribution of intermetallic compound (IMC) FeSn2 formed at the interface between the two solders and amorphous substrate is changed from discontinuous state to continuous state. The thickness of the interfacial IMC layer between solder and amorphous substrates reduced with the addition of MRE, indicating that the presence of 0.25 wt.% percentage of the MRE is effective in suppressing the growth of IMC layer.


1999 ◽  
Vol 86 (12) ◽  
pp. 6746-6751 ◽  
Author(s):  
P. G. Kim ◽  
J. W. Jang ◽  
T. Y. Lee ◽  
K. N. Tu

2016 ◽  
Vol 28 (3) ◽  
pp. 133-140 ◽  
Author(s):  
Bingsheng Xu ◽  
Yan Wu ◽  
Lina Zhang ◽  
Junwei Chen ◽  
Zhangfu Yuan

Purpose This research aims to provide a theoretical method and data supports for a future study on interfacial reaction mechanism and spreading mechanism between molten solder and V-shaped substrate, which also gives guidance for those complicated welding operation objects in brazing technique. Design/methodology/approach Wetting experiments were performed to measure the contact angles at different temperatures of molten Sn-3.0Ag-0.5Cu wetting on the quartz substrate with an included angle of 90°. According to the experimental results, the theoretical spreading morphology of molten solder on V-shaped substrate at corresponding temperature was simulated by Surface Evolver. Findings The theoretical morphology profiles of the molten solder sitting on the V-shaped substrate are simulated using Surface Evolver when the molten solder reaches spreading equilibrium. The spreading mechanisms as well as the impact of surface tension and gravity on interfacial energy of the molten solder wetting on the V-shaped groove substrate are also discussed where theoretical results agree well with experiment results. The contact area between the gas and liquid phases shows a tendency of first increasing and later decreasing. Otherwise, the spreading distance and the height of the molten solder increases as the droplet volume increases as the included angle and the contact angle are given as constants, and both the interfacial energy and the gravitational energy increase as well. This research has a wide influence on predicting the outcomes in commercial impact and also gives guidance for those complicated welding operation objects in brazing technique. Research limitations/implications It is of very important significance in both science and practice to investigate the differences between the flat surface and V-shaped surface. Some necessary parameters including intrinsic contact angle and surface tension need to be directly measured when the droplet spreads on the flat surface. The relevant simulation conclusions on the inherent characteristics can be given based on these intrinsic parameters. Compared with the flat surface, the V-shaped substrate is chosen for further discuss on the effects of gravity on the droplet spreading behavior and the changes of apparent contact angle which can only occurs as the substrate is inclined. Therefore, this research provides theoretical method and data supports for a future study on interfacial reaction mechanism and spreading mechanism between molten solder and substrate. Practical implications The research is developed for verifying the accuracy of the model built in Surface Evolver. Based on this verified model, other researches on the spreading distance along y-axis and the contact area that are especially difficult to be experimentally measured can be directly simulated by Surface Evolver, which can provides a convenient method to discuss the changes of horizontal spreading distance, droplet height and contact area with increasing the included angle of V-shaped substrate or with increasing the droplet volume. Actually, the modeling results are calculated for supplying the theoretical parameters and technical guidance in the welding process. Social implications This research provides theoretical method and data supports for a future study on interfacial reaction mechanism and spreading mechanism between molten solder and substrate, which has a wide influence on prediction the outcomes in commercial impact and also gives guidance for those complicated welding operation objects in brazing technique. Originality/value Surface Evolver, can also be used to discuss the structure and spreading mechanism of droplets on V-shaped substrates, which have not been discussed before.


2006 ◽  
Vol 510-511 ◽  
pp. 554-557 ◽  
Author(s):  
Jeong Won Yoon ◽  
Seung Boo Jung

The interfacial reaction between eutectic Sn-3.5Ag solder and ENIG substrate during reflow was investigated. During the reflow, the topmost Au layer dissolved into the molten solder, and the reaction layers of Ni3Sn4/Ni-Sn-P/Ni3P formed between Sn-Ag solder and Ni-P plating layer. After the reflow at 255 for 3 min, most of Ni3Sn4 intermetallic compound (IMC) spalled off the substrate. The formation of thick Ni3P and Ni-Sn-P layers was related to the direct reaction between solder and Ni-Sn-P layer by the IMC spalling.


2017 ◽  
Vol 893 ◽  
pp. 132-135
Author(s):  
Zhi Xin Liu ◽  
Wen Song Lin

The wetting behavior of SiC by molten Al and Al-Mg alloys using the sessile-drop testing equipment was investigated. The results showed that Mg has a remarkable influence on the wettability and reaction in the Al/SiC system. The contact angle between SiC substrate and molten Al-Mg alloys decreased more quickly with increasing of Mg content. The transition temperature from non-wetting to wetting dropped with increasing of Mg content, suggesting that the addition of Mg does promote the wettability of SiC by molten Al. The role of the Mg addition on the wetting was presumably attributed to its deoxidation as well as the inhibition of the interfacial reaction between Al and SiC.


2017 ◽  
Vol 48 (12) ◽  
pp. 1077-1088
Author(s):  
Yukihiro Yonemoto ◽  
Tomoaki Kunugi
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document